Advanced
Transaction

Models and

Architectures

Editors
Sushil Jajodia and Larry Kerschberg

Advanced Transaction Models and
Architectures

Advanced Transaction Models and
Architectures

Edited by

Sushil Jajodia and Larry Kerschberg

George Mason University
Fairfax, VA

v
N

Springer Science+Business Media, LLC

Library of Congress Cataloging-in-Publication Data

Jajodia, Sushil and Kerschberg, Larry
Advanced transaction models and architectures / edited by Sushil
Jajodia and Larry Kerschberg.

P. Cm.-
Includes bibliographical references and index
ISBN 978-1-4613-7851-8 ISBN 978-1-4615-6217-7 (eBook)

DOI 10.1007/978-1-4615-6217-7
1. Reliability (Engineering) 2. Electronic digital computers-
-Reliability. 3. Computer software—Reliability. 4. Fuzzy sets.
5. Fuzzy logic.
QA76.545.A38 1997
005'.74--dc21 96-16276
CIP

Copyright © 1997 Springer Science+Business Media New York
Originally published by Kluwer Academic Publishers, New York in 1997
Softcover reprint of the hardcover 1st edition 1997

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, mechanical, photo-
copying, recording, or otherwise, without the prior written permission of the
publisher, Springer Science+Business Media, LLC.

Printed on acid-free paper.

Contents

Preface

Part | Workflow Transactions

1
Transactions in Transactional Workflows

Devashish Worah and Amit Sheth
1.1 Introduction
1.2 Advanced Transaction Models
1.2.1 Nested Transactions
1.2.2 Open Nested Transactions
1.2.3 Sagas
1.2.4 Multi-Level Transactions
1.2.5 Flexible Transactions
1.2.6 ACTA and its derivatives
1.3 Transactional Workflows
1.3.1 Previous Research on using Transactions for Workflows
1.4 Workflow Recovery .
1.41 Transaction Concepts in Modeling Workflow Recovery
1.5 Workflow Error Handling
1.6 Transactions, ATMs and Recovery in Large-Scale WFMSs
1.6.1 Error Handling and Recovery in the METEORy WFMS
1.6.1.1 Overview of METEORy Workflow Model

1.6.1.2 ORBWork: A Distributed Implementation of the METEOR
WFMS

1.6.1.3 Modeling Errors in METEOR2
1.6.1.4 Recovery Framework in ORBWork

1.7 Types of Transactions in the Real World: Beyond Database Transactions
1.8 Conclusion
Appendix: A Normative Perspective

2
WFMS: The Next Generation of Distributed Processing Tools
Gustavo Alonso and C. Mohan
2.1 Introduction
2.2 _Workflow Management Systems
2.2.1 Workflow Concepts
2.2.2 Process Representation
2.2.3 _ Architecture

xiii

w

Pl i
PWOW VROV NNND W

vi ADVANCED TRANSACTION MODELS AND ARCHITECTURES

23

2.4

25

Part 11

2.23.1 Functional Description
2.2.3.2 Runtime Architecture
2.2.4 Process Execution
Functionality and Limitations of Workflow Management Systems
2.3.1 Availability
232 Scalability
2.3.3 Industrial Strength
Evolution of Workflow Management Systems
2.41 Distributed Environments
2.42 Process Support Systems
2.43 Programming in Heterogeneous, Distributed Environments
Conclusions

Tool-Kit Approaches

The Reflective Transaction Framework

Roger S.
31
32
33

34

35

Barga and Calton Pu
Introduction
Extending a Conventional TP Monitor

The Reflective Transaction Framework
3.3.1 Extensions Through Transaction Events
3.3.2 Implementing Reflection and Causal Connection

3.3.3 A Separation of Programming Interfaces

Applications of the Reflective Transaction Framework
3.41 Implementing Advanced Transaction Models

3.42 Implementing Semantics-Based Concurrency Control

Conclusion

Flexible Commit Protocols for Advanced Transaction Processing
Luigi Mancini, Indrajit Ray, Sushil Jajodia and Elisa Bertino

41
42

43
4.4

4.5

4.6

Introduction

Overview of Our Approach

42.1 The System Architecture

4.2.2 lllustrative Example

An Example of Transaction Dependencies

Primitives for Flexible Commit

4.4.1 Basic Primitives

442 New Primitives

4.43 Discussion

Realizing Various Transaction Dependencies

451 ACTA Framework

452 Sagas

45.3 Workflows and Long Lived Activities
453.1 Semiatomicity

454 Secure Distributed Transactions

455 Contingent Transactions

45.6 Nested Transactions

Conclusions and Future Work

63

64
66
68

70
73
75
75
80

87

108
109
110
111
113
114
116
119
121

123

Contents

Part Il Long Transactions and Semantics

5
ConTracts Revisited

Andreas Reuter, Kerstin Schneider and Friedemann Schwenkreis
5.1 Introduction
5.1.1 The Motivation For ConTracts
5.1.2 A Brief Survey of the' Model

5.2 Transactions in a Workflow Environment
5.2.1 Use of ACID-Transactions
5.2.2 Semi-Transactional Activities

5.3 Reconsidering Correctness
5.3.1 Transactional Properties and ConTracts
5.3.1.1 Recoverability
5.3.1.2 Permeability
5.3.1.3 Consistency
5.3.1.4 Durability
5.3.2 Recovery and Serializability
5.3.3 The Conflict Relationship
5.3.4 Execution Histories and Correctness
5.4 Compensation in Detail
5.4.1 A Basic Definition of Compensation
5.4.2 Script-based Compensation
5.4.3 Comprehensive Compensation
5.4.4 Partial Compensation

5.5 Summary

6
Semantic-Based Decomposition of Transactions

Paul Ammann, Sushil Jajodia and Indrakshi Ray
6.1 Introduction
6.2 Related Work
6.3 The Hotel Database
6.4 The Model
6.4.1 A Naive Decomposition of the Reserve Transaction
6.4.2 Generalizing the Original Invariants
6.4.3 Compensating Steps
6.4.4 Semantic Histories
6.5 Properties of Valid Decomposition
6.5.1 Composition Property
6.5.2 Sensitive Transaction Isolation Property
6.5.3 Consistent Execution Property
6.5.4 Semantic Atomicity Property
6.5.5 Successful Execution Property
6.6 Examples of Decomposition
6.6.1 A Valid Decomposition
6.6.1.1 Composition Property
6.6.1.2 Sensitive Transaction Isolation Property
6.6.1.3 Consistent Execution Property
6.6.1.4 Semantic Atomicity Property
6.6.2 An Invalid Decomposition
6.7 Successor Sets
6.8 Concurrent Execution
6.8.1 Correct Stepwise Serializable Histories
6.8.2 Concurrency Control Mechanism

vii

127

127
128
129
132
132
133

134
134
134
135
135
135
136
136
138
141
141
144
146
149

150

153

153
156
157
159
160
161
162
163
165
165
165
166
166
167

167
167
168
168
169
169
171

172

175
175
176

viii ADVANCED TRANSACTION MODELS AND ARCHITECTURES

6.8.2.1 Algorithms
6.8.2.2 Discussion

6.9 Conclusion

Part IV Concurreny Control and Recovery

Customizable Concurrency Control for Persistent Java
Laurent Daynés, M.P. Atkinson and Patrick Valduriez

7.1 Introduction
7.1.1 Overview of Persistent Java
7.1.2 Customizable Concurrency Control
7.2 Design Choices
7.2.1 Transactions as Java objects
7.2.2 Two-level interface
7.2.3 Implicit transaction semantics
7.2.4 Implementation choices
7.2.5 . Outline of the modified JVM
7.3 Programming model
7.4 Transaction Shell
7.5 Locking Capabilities
7.5.1 Ignoring Conflicts
7.5.2 Delegation
7.5.3 Notification
754 Summary
7.6 Realizing Transaction Models
7.6.1 Flat Transactions
7.6.2 Nested Transactions
7.7 Related Work
7.8 Conclusion

8
Toward Formalizing Recovery of (Advanced) Transactions

Cris Pedregal Martin and Krithi Ramamritham
8.1 Introduction
8.2 The Formal Model
8.2.1 Modeling Recovery through Histories
8.2.2 Events, Histories, States
8.3 Requirements, Assurances & Rules
8.3.1 Durability
8.3.2 Failure Atomicity
8.3.3 Failure Atomicity and Delegation
8.3.4 Assurances for Failure Atomicity
8.3.5 Assurances for Durability
8.3.6 Recovery Mechanisms Rules
8.3.7 Logging and Commit/Abort Protocols
8.4 A Specific Recovery Protocol
8.4.1 Overview of ARIES and ARIES/RH
8.4.1.1 Data Structures
8.4.1.2 Normal Processing
8.4.1.3 Crash Recovery
8.4.2 Formalizing some properties of ARIES and ARIES/RH
8.4.3 Proof Sketches
8.5 Further Work and Summary

177
179

179

183

183
184
186
186
187
187
190
190
191
191
195
197
198
201
201
202
202
203
204
208
210

213

213
215
217
219
221
221
222
222
224
224
225
226
226
226
227
228
229
230
232
232

Contents

Part V Transaction Optimization

9
Transaction Optimization Techniques

Abdelsalam Helal, Yoo-Sung Kim, Marian H. Nodine,
Ahmed K. Elmagarmid and Abdelsalam A. Heddaya

9.1 Introduction
9.1.1 What is Wrong with the Current Architecture?
9.1.2 How Should We Change the Architecture?
9.1.3 Chapter Organization
9.1.4 Related Work

9.2 Problem Definition

9.3 A Novel Transaction Optimization Strategy
9.3.1 Pre-Access Optimization
9.3.2 Post-Access Optimization

9.4 Query Optimization issues
9.4.1 Query Decomposition and Site Assignment
9.4.2 Interim Replication

9.5 Conclusions

Part VI ECA Approach

10
An Extensible Approach To Realizing Advanced Transaction Models
Eman Anwar, Sharma Chekravarthy and Marissa Viveros

10.1 Introduction
10.1.1 Goals
10.1.2 Related Work

10.2 Our Approach
10.2.1 Realizing Transaction Models using ECA rules

10.3 Implementation Details
10.3.1 Zeitgeist
~-10.3.2 Making Zeitgeist Active at the Systems Level
' 10.4 Realizing Transaction Models
10.5 Extensibility
10.6 Conclusions

Part VIl OLTP/OLAP

11
Inter- and Intra-transaction Parallelism for Combined OLTP/OLAP Workloads
Christof Hasse and Gerhard Weikum

11.1 Introduction

11.2 Background on Multi-level Transactions
11.3 The PLENTY Architecture

11.4 Granularity of Parallelism

11.5 Transaction Management Internals
11.6 Scheduling Strategies

11.7 An Application Study

11.8 Conclusion

ix

237

238
239
241
242
243

243

245
246
249

253
253
254

254

259

259
261
262

263
265

268
268
270
272
274
275

279

279
282
283
284
288
201
294
297

X ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Part VIII Real-Time Data Management
12

Towards Distributed Real-Time Concurrency and Coordination Control

Paul Jensen, Nandit Soparkar and Malek Tayara
12.1 Introduction
12.2 Responsiveness and Consistency
12.2.1 Simple Concurrency Control
12.2.2 More Elaborate Coordination Control
12.3 Enabling Technologies
12.3.1 Centralized CC for RTR
12.3.2 Characterization Efforts
12.3.3 Performance Studies
12.3.4 Real-time and Distributed Systems
12.3.5 Application-specific Approaches
12.4 Logical System Architecture
12.4.1 Providing RTR at Local Sites
12.4.2 Distributed Real-time CC
12.4.3 Levels with Differing Requirements
12431 Level A
12.43.2 Level B
12.4.3.3 Level U
12.5 Synchronization using Application Semantics
12.5.1 Relaxed Atomicity
12.5.2 Communication Level Approaches

12.6 Conclusions

Part IX Mobile Computing

13
Transaction Processing in Broadcast Disk Environments

Jayavel Shanmugasundaram, Arvind Nithrakashyap, Jitendra Padhye,

Rajendran Sivasenkaran, Ming Xiong and Krithi Ramamritham
13.1 Introduction
13.2 Motivation for Weakening Serializability
13.3 Formalization of Consistency Requirements
13.3.1 Requirements
13.3.2 Formalization of Requirements
13.3.3 Comparison with View Serializability
13.4 Weakened Requirements
13.4.1 Motivation for Weaker Requirements
13.4.2 Weakened Requirements
13.4.3 Formalizing Weakened Requirements
13.5 Mechanisms to Guarantee Correctness
13.5.1 Broadcast Disks
13.5.2 Protocol
13.5.2.1 Server Functionality
13.5.2.2 Client Functionality
13.5.3 Proof of Correctness
13.6 Conclusions and Future Work

303

303

306
306
307
308
308
309
310
310
31
311
313
313
313
314
314
314
315
316
317

317

321

321
324
326
326
327
329

330
331
332
332

333
334
334
334
335
337

337

Contents xi
References 339
Contributing Authors 365

Index 375

Preface

Motivation

Modem enterprises rely on database management systems (DBMS) to collect,
store and manage corporate data, which is considered a strategic corporate re-
source. Recently, with the proliferation of personal computers and departmen-
tal computing, the trend has been towards the decentralization and distribution
of the computing infrastructure, with autonomy and responsibility for data now
residing at the departmental and workgroup level of the organization.

Users want their data delivered to their desktops, allowing them to incor-
porate data into their personal databases, spreadsheets, word processing doc-
uments, and most importantly, into their daily tasks and activities. They want
to be able to share their information while retaining control over its access and
distribution.

There are also pressures from corporate leaders who wish to use information
technology as a strategic resource in offering specialized value-added services
to customers. Database technology is being used to manage the data associated
with corporate processes and activities. Increasingly, the data being managed
are not simply formatted tables in relational databases, but all types of ob-
jects, including unstructured text, images, audio, and video. Thus, the database
management providers are being asked to extend the capabilities of DBMS to
include object-relational models as well as full object-oriented database man-
agement systems. Corporations are also using the World Wide Web and the
Internet to distribute information, conduct electronic commerce, and form vir-
tual corporations where services are provided by a collection of companies,
each specializing in a certain portion of the market. This implies that organi-
zations will form federations in which they will share information for the good
of the virtual enterprise.

Rather than viewing a database as a passive repository of information, users,
managers;and,database,systemsproviders want to endow databases with active
properties, so that corporate databases can become an active participants in

xiv ADVANCED TRANSACTION MODELS AND ARCHITECTURES

corporate processes, activities and workflows. Thus, there is a real need for ac-
tive databases that can deliver timely information to users based on their needs,
as expressed in profiles and subscriptions. Further, active databases must deal
with important events and critical conditions in real-time, that is, as they hap-
pen, and take appropriate actions to ensure the correctness and quality of data.
Finally, organizations are extracting historical data from on-line transaction
processing databases, loading it into data warehouses for on-line analytical
processing, and mining it for important patterns and knowledge. These pat-
terns drive decision-making processes to improve corporate workflow, enhance
customer satisfaction, and attain competitive advantage.

Clearly, the trends discussed above pose new requirements and challenges
for the design and implementation of next-generation database management
systems. For example, we cannot rely on traditional transaction processing
models with their stringent locking protocols because many corporate activities
require support for long-running transactions. In federated systems one cannot
impose a processing protocol on a federation partner, rather one must rely on
negotiated contracts and commitments for specified levels of service.

New workflow models are required to define computer- and database-suppor-
ted activities to cooperate in the integration and sharing of information among
functional units in the organization. The reengineering of processes and acti-
vities can benefit from these new workflow models. These concepts may find
their way into the new database management systems or into “middle-ware”
products that work in conjunction with the DBMS.

Advanced Transaction Models and Architectures

It is in the context of evolving requirements, uses and expectations for data-
base management systems that we have assembled this important collection of
papers authored by world-renowned thinkers, designers and implementors of
database systems to address the issues associated with advanced transaction
models and architectures. The issues discussed in the book include: 1) work-
flow models, 2) new transaction models, protocols and architectures, 3) se-
mantic decomposition of transactions, 4) distributed processing, 5) real-time
transaction processing, 6) active databases, and 6) new concurrency models for
transactional workflows.

We have divided the book into sections and have grouped the papers into
topic areas. Part I deals with Workflow Transactions. D. Worah and A. Sheth
discuss the role of transactions in workflows, including such topics as recov-
ery and error handling for long-running workflows. G. Alonso and C. Mohan
address architectures for workflow management systems, and discuss the chal-
lenges facing designers of such systems.

Part II deals with tool-kit approaches to transaction processing. R. Barga
and C. Pu present a Reflective Transaction Framework for implementing ad-

PREFACE XV

vanced transaction models as well as semantics-based concurrency control. L.
Mancini, I. Ray, S. Jajodia and E. Bertino address flexible commit protocols
and show how a general framework can address specific issues such as sagas,
workflows, long-lived activities and transactions, and transaction dependen-
cies.

Part IIT addresses semantic issues associated with transactions, specifically
within the context of the ConTracts Model, and also in the semantic decom-
position of transactions. A. Reuter, K. Schneider and F. Schwenkreis provide
a survey of the ConTracts model, and show how it can be used for handling
workflows and properties dealing with the correctness of long-running transac-
tions. P. Ammann, S. Jajodia, and I. Ray focus on the semantics-based decom-
position of transactions, introduce concepts such as compensating steps and
semantic histories, and prove useful properties of valid decompositions and the
processing of such decomposed transactions.

Part IV deals with concurrency control and recovery of transactions. L.
Daynés, M. Atkinson, and P. Valduriez discuss how one can customize con-
currency control for “persistent” Java. They present a programming model
and a transaction shell to support user trade-off analysis and design decisions.
C. Martin and K. Ramamritham provide a formal model for recovery of ad-
vanced transactions. They couch their model in the form of requirements, as-
surances and rules to ensure failure atomicity, transaction durability, and recov-
ery. They discuss the model and framework within the context of the ARIES
and ARIES/RH recovery protocols.

Part V focuses on transaction optimization techniques. A. Helal, Y-S. Kim,
M. Nodine, A. Elmagarmid, and A. Heddaya discuss the failings of current
architectures, propose a novel approach based on pre- and post-optimization,
and discuss the role of query optimization as it relates to query decomposition,
site assignment and replication strategies.

Part VI discusses how the Event-Condition-Action (ECA) paradigm from
active databases can be used to implement transaction models. A. Anwar, S.
Chakravarthy, M. Viveros present this approach within the Zeitgeist object-
oriented database management system.

Part VII discusses the role of inter- and intra-transaction parallelism in the
context of both on-line transaction processing (OLTP) and on-line analytical
processing (OLAP). C. Hasse and G. Weikum present these concepts within
the framework of the PLENTY system which supports both kinds of transaction
processing. This is quite different from the current approach in which OLAP
is done separately in a data warehouse which is constructed by extracting data
from corporate on-line transaction processing systems.

Part VIII is devoted to Real-Time Data Management and P. Jensen, N. Sopar-
kar.and. M., Tayara discuss.real-time.concurrency and coordination control in
the context of distributed systems.

xvi ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Part IX completes our collection with a focus on Mobile Computing. J.
Shanmugasundaram, A. Nithrakashyap, J. Padhye, R. Sivasankaran, M. Xiong,
and K. Ramamritham discuss transaction models in the context of mobile sys-
tems in which low bandwidth, low storage capacity and insufficient power im-
pose new challenges for client-server communication and transactions.

We would like to extend our sincerest thanks to Mr. Indrajit Ray who assisted
with every aspect of preparing this book, from collection of manuscripts from
the authors to dealing with the Kluwer staff regarding I&TzX-related issues.
Thanks are also due to our publisher, Mr. Alex Greene, whose enthusiasm and
support for this project was most helpful.

SUSHIL JAJODIA AND LARRY KERSCHBERG

This book is dedicated to our
loving wives Kamal and Nicole

I Workflow Transactions

]. TRANSACTIONS IN
TRANSACTIONAL WORKFLOWS

Devashish Worah and Amit Sheth

Abstract: Workflow management systems (WFMS:s) are finding wide applica-
bility in small and large organizational settings. Advanced transaction models
(ATMs) focus on maintaining data consistency and have provided solutions to
many problems such as correctness, consistency, and reliability in transaction
processing and database management environments. While such concepts have
yet to be solved in the domain of workflow systems, database researchers have
proposed to use, or attempted to use ATMs to model workflows. In this paper
we survey the work done in the area of transactional workflow systems. We then
argue that workflow requirements in large-scale enterprise-wide applications in-
volving heterogeneous and distributed environments either differ or exceed the
modeling and functionality support provided by ATMs. We propose that an ATM
is unlikely to provide the primary basis for modeling of workflow applications,
and subsequently workflow management. We discuss a framework for error han-
dling and recovery in the METEOR, WEMS that borrows from relevant work in
ATMs, distributed systems, software engineering, and organizational sciences.
We have also presented various connotations of transactions in real-world orga-
nizational processes today. Finally, we point out the need for looking beyond
ATMs and using a multi-disciplinary approach for modeling large-scale work-
flow applications of the future.

1.1 INTRODUCTION

A workflow is an activity involving the coordinated execution of multiple rasks
performed by different processing entities [Krishnakumar and Sheth, 1995]. A
workflow process is an automated organizational process involving both hu-
man and automated tasks. Workflow management is the automated coordina-

4 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

tion, control and communication of work as is required to satisfy workflow
processes [Sheth et al., 1996a]. There has been a growing acceptance of work-
flow technology in numerous application domains such as telecommunications,
software engineering, manufacturing, production, finance and banking, health
care, shipping and office automation [Smith, 1993, Joosten et al., 1994, Geor-
gakopoulos et al., 1995, Fischer, 1995, Tang and Veijalainen, 1995, Sheth
et al., 1996b, Palaniswami et al., 1996, Bonner et al., 1996, Perry et al., 1996].
Workflow Management Systems (WFMSs) are being used in inter- and intra-
enterprise environments to re-engineer, streamline, automate, and track organi-
zational processes involving humans and automated information systems.

In spite of the proliferation of commercial products for workflow manage-
ment (including modeling and system supported enactment), workflow tech-
nology is relatively immature to be able to address the myriad complexities as-
sociated with real-world applications. The current state-of-the-art is dictated by
the commercial market which is focused toward providing automation within
the office environment with emphasis on coordinating human activities, and
facilitating document routing, imaging, and reporting. However, the require-
ments for workflows in large-scale multi-system applications executing in het-
erogeneous, autonomous, distributed (HAD) environments involving multiple
communication paradigms, humans and legacy application systems far exceeds
the capabilities provided by products today [Sheth, 1995].

Some of the apparent weaknesses of workflow models that need to be ad-
dressed by the workflow community include the lack of a clear theoretical
basis, undefined correctness criteria, limited support for synchronization of
concurrent workflows, lack of interoperability, scalability and availability, and
lack of support for reliability in the presence of failures and exceptions [Bre-
itbart et al., 1993, Jin et al., 1993, Georgakopoulos et al., 1995, Mohan et al.,
1995, Alonso and Schek, 1996b, Kamath and Ramamritham, 1996a, Leymann
et al., 1996, Alonso et al., 1996a]. In addition, a successful workflow-enabled
solution should address many of the growing user needs that have resulted
from:

= emerging and maturing infrastructure technologies and standards for dis-
tributed computing such as the World Wide Web, Common Object Re-
quest Broker Architecture [OMG, 1995b], Distributed Common Object
Model (DCOM), ActiveX, Lotus Notes, and Java.

m increasing need for electronic commerce using standard protocols such
as Electronic Data Interchange (EDI) (e.g., ANSI X.12 and HL7),

» additional organizational requirements in terms of security and authenti-
cation,

s demands for integrated collaboration (not just coordination) support,

TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 5

s increasing use of heterogeneous multimedia data, and

® requirements to support dynamic workflows to respond to the fast chang-
ing environment (e.g., defense planning), or for supporting today’s dy-
namic and virtual enterprises.

Workflow technology has emerged as a multi-disciplinary field with sig-
nificant contributions from the areas of software engineering, software pro-
cess management, database management, and distributed systems [Sheth et al.,
1996a]. In spite of the standardization efforts of the Workflow Management
Coalition [Coalition, 1994], a consensus on many broader aspects have not yet
been achieved.

Work in the areas of transaction processing [Gray and Reuter, 1993] and
database systems, and many (but not all) efforts related to ATMs [Elmagarmid,
1992, Chrysanthis and Ramamritham, 1991, Georgakopoulos et al., 1994], are
based on a strong theoretical basis. They have proposed or documented solu-
tions (although many of which have yet to be implemented) to problems such
as correctness, consistency, and recovery when the constituent tasks are trans-
actional, or the processing entities provide a transactional interface. There
exists a strong school of thought, primarily comprised of researchers from
the database community, which views a workflow model as an extension of
ATMs [Georgakopoulos and Hornick, 1994, Georgakopoulos et al., 1994, Chen
and Dayal, 1996, Biliris et al., 1994, Weikum, 1993, Waechter and Reuter,
1992]. However, it has also been observed [Breitbart et al., 1993, Alonso et al.,
1996b, Worah and Sheth, 1996] that ATMs have limited applicability in the
context of workflows due to their inability to model the rich requirements of
today’s organizational processes adequately.

Traditional database transactions provide properties such as failure atomicity
and concurrency control. These are very useful concepts that could be appli-
cable in workflows. For example, failure atomicity can be supported for a task
that interacts with a DBMS, or a group of tasks using the two-phase commit
protocol. There is a potential need for concurrency control and synchronization
of workflow processes for addressing correctness concerns during workflow
execution [Jin et al., 1993, Alonso et al., 1996a]. Based on our review of re-
quirements of existing applications using workflows [Worah and Sheth, 1996],
we feel that transactional features form only a small part of a large-scale work-
flow application. Workflow requirements either exceed, or significantly differ
from those of ATMs in terms of modeling, coordination and run-time require-
ments. It would definitely be useful to incorporate transactional semantics such
as recovery, relaxed atomicity and isolation to ensure reliable workflow execu-
tions. Nevertheless, to view a workflow as an ATM, or to use existing ATMs
to,completely.model.workflows,would:be inappropriate. We do not think that
existing ATMs provide a comprehensive or sufficient framework for modeling
large-scale enterprise-wide workflows.

6 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Our observations in this chapter reflect our experience in modeling and
development efforts for a real-world workflow application for immunization
tracking [Sheth et al., 1996b, Palaniswami et al., 1996], experience in try-
ing to use flexible transactions in multi-system telecommunication applica-
tions [Ansari et al., 1992], and our understanding of the current state of the
workflow technology and its real-world or realistic applications [Sheth et al.,
1996b, Medina-Mora and Cartron, 1996, Bonner et al., 1996, Ansari et al.,
1992, Vivier et al., 1996, Sheth and Joosten, 1996].

We emphasize the need for looking beyond the framework of ATMs for mod-
eling and executing workflow applications. The term transaction as it is used
in business processes today has multiple connotations, database transactions
being only one of them. For example, EDI transactions are used for defining
interfaces and data formats for exchange of data between organizations and
Health Level 7 (HL7) transactions are used to transfer patient data between
health care organizations. We discuss other uses of this term in section 1.7.
Workflow systems should evolve with the needs of the business and scientific
user communities, both in terms of modeling and run-time support. Of course,
it is possible that in some specific domains, ATM based workflow models may
be sufficient, however, we believe, such cases would be very few.

The organization of this chapter is as follows. Sections 2 through 5 are
tutorial in nature. In section 2 we review the research in the domain of ATMs.
The next section discusses the characteristics of transactional workflows and
significant research in this area. One of the primary focus of transactional
workflows is recovery. In section 4 we highlight the issues involved in recovery
for workflow systems. Section 5 discusses the types of errors that could occur
during workflow execution. In section 6 we discuss a practical implementation
of error handling and recovery in a large-scale WFMS. Section 6 provides a
perspective into the characteristics and interpretation of transactions as they
exist in workflow applications today. Finally, we conclude the paper with our
observations regarding the role of transactions in transactional workflows.

1.2 ADVANCED TRANSACTION MODELS

In this section we will briefly describe some of the ATMs discussed in the
literature [Gray and Reuter, 1993, Elmagarmid, 1992]. These models can be
classified according to various characteristics that include transaction struc-
ture, intra-transaction concurrency, execution dependencies, visibility, durabil-
ity, isolation requirements, and failure atomicity. ATMs permit grouping of
their operations into hierarchical structures, and in most cases relax (some of)
the ACID requirements of classical transactions. In this section, we discuss
some of the ATMs that we feel are relevant in the context of workflow systems.

TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 7

1.2.1 Nested Transactions

An important step in the evolution of a basic transaction model was the ex-
tension of the flat (single level) transaction structure to multi-level structures.
A Nested Transaction [Moss, 1982] is a set of subtransactions that may recur-
sively contain other subtransactions, thus forming a transaction tree. A child
transaction may start after its parent has started and a parent transaction may
terminate only after all its children terminate. If a parent transaction is aborted,
all its children are aborted. However, when a child fails, the parent may choose
its own way of recovery, for example the parent may execute another sub-
transaction that performs an alternative action (a contingency subtransaction).
Nested transactions provide full isolation at the global level, but they permit
increased modularity, finer granularity of failure handling, and a higher degree
of intra-transaction concurrency than the traditional transactions.

1.2.2 Open Nested Transactions

Open Nested Transactions [Weikum and Schek, 1992] relax the isolation re-
quirements by making the results of committed subtransactions visible to other
concurrently executing nested transactions. This way, a higher degree of con-
currency is achieved. To avoid inconsistent use of the results of committed
subtransactions, only those subtransactions that commute with the committed
ones are allowed to use their results. Two transactions (or, in general, two op-
erations) are said to commute if their effects, i.e., their output and the final state
of the database, are the same regardless of the order in which they were exe-
cuted. In conventional systems, only read operations commute. Based on their
semantics, however, one can also define update operations as commutative (for
example increment operations of a counter).

1.2.3 Sagas

A Saga [Garcia-Molina and Salem, 1987] can deal with long-lived transac-
tions. A Saga consists of a set of ACID subtransactions Ty, ..., T, with a pre-
defined order of execution, and a set of compensating subtransactions CTy, ...,
CT,—1, corresponding to Ty, ..., T,—1. A saga completes successfully, if the
subtransactions T, ..., T, have committed. If one of the subtransactions, say
T, fails, then committed subtransactions Ty, ..., Ty—; are undone by executing
compensating subtransactions CT;_j, ..., CT;. Sagas relax the full isolation
requirements and increase inter-transaction concurrency. An extension allows
the nesting of Sagas [Garcia-Molina et al., 1991]. Nested Sagas provide use-
ful mechanisms to structure steps involved within a long running transaction
into hierarchical transaction structures. This model promotes a relaxed notion
of atomicityswhereby forwardirecovery is used in the form of compensating
transactions to undo the effects of a failed transaction.

8 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

1.2.4 Multi-Level Transactions

Multi-Level Transactions are more generalized versions of nested transactions
[Weikum and Schek, 1992, Gray and Reuter, 1993]. Subtransactions of a multi-
level transactions can commit and release their resources before the (global)
transaction successfully completes and commits. If a global transaction aborts,
its failure atomicity may require that the effects of already committed subtrans-
actions be undone by executing compensating subtransactions. A compensat-
ing subtransaction ¢~ semantically undoes effects of a committed subtransac-
tion ¢, so that the state of the database before and after executing a sequence
t t~ is the same. However, an inconsistency may occur if other transaction
s observe the effects of subtransactions that will be compensated later [Gray
and Reuter, 1993, Garcia-Molina and Salem, 1987, Korth et al., 1990b]. Open
nested transactions use the commutativity to solve this problem. Since only
subtransactions that commute with the committed ones are allowed to access
the results, the execution sequence ¢ st~ is equivalent to s £ ¢~ and, according to
definition of compensation, to s, and therefore is consistent. A somewhat more
general solution in the form of a horizon of compensation, has been proposed
in [Krychniak et al., 1996] in the context of multi-level activities.

1.2.5 Flexible Transactions

Flexible Transactions [Elmagarmid et al., 1990, Zhang et al., 1994a] have been
proposed as a transaction model suitable for a multidatabase environment. A
flexible transaction is a set of tasks, with a set of functionally equivalent sub-
transactions for each and a set of execution dependencies on the subtransac-
tions, including failure dependencies, success dependencies, or external de-
pendencies. To relax the isolation requirements, flexible transactions use com-
pensation and relax global atomicity requirements by allowing the transaction
designer to specify acceptable states for termination of the flexible transaction,
in which some subtransactions may be aborted. IPL [Chen et al., 1993] is
a language proposed for the specification of flexible transactions with user-
defined atomicity and isolation. It includes features of traditional programming
languages, such as type specification to support specific data formats that are
accepted or produced by subtransactions executing on different software sys-
tems, and preference descriptors with logical and algebraic formulae used for
controlling commitments of transactions. Because flexible transactions share
some more of the features of a workflow model, it was perhaps the first ATM
to have been tried to prototype workflow applications [Ansari et al., 1992].

1.2.6 ACTA and its derivatives

Reasoning about various transactionmodels can be simplified using the ACTA
metamodel [Chrysanthis and Ramamritham, 1992]. ACTA captures the impor-

TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 9

tant characteristics of transaction models and can be used to decide whether
a particular transaction execution history obeys a given set of dependencies.
However, defining a transaction with a particular set of properties and assur-
ing that an execution history will preserve these properties remains a difficult
problem.

In [Biliris et al., 1994], the authors propose a relaxed transaction .facility
called ASSET. 1t is based on transaction primitives derived from the ACTA
framework that can be used at a programming level to specify customized,
application specific transaction models that allow cooperation and interaction.
The transaction primitives include a basic and an extended set of constructs
that can be used in an application that needs to support custom transactional
semantics at the application level. These can be used to support very limited
forms of workflows that involve transaction-like components. In some sense,
this demonstrates the limitations one may face when trying to use an ATM as a
primary basis for workflow modeling.

1.3 TRANSACTIONAL WORKFLOWS

The term transactional workflows [Sheth and Rusinkiewicz, 1993] was intro-
duced to clearly recognize the relevance of transactions to workflows. It has
been subsequently used by a number of researchers [Breitbart et al., 1993,
Rusinkiewicz and Sheth, 1995, Krishnakumar and Sheth, 1995, Georgakopou-
los et al., 1995, Tang and Veijalainen, 1995, Leymann et al., 1996]. Trans-
actional workflows involve the coordinated execution of multiple related tasks
that require access to HAD systems and support selective use of transactional
properties for individual tasks or entire workflows. They use ATMs to spec-
ify workflow correctness, data-consistency and reliability. Transactional work-
flows provide functionality required by each workflow process (e.g., allow task
collaboration and support the workflow structure) which is usually not avail-
able in typical DBMS and TP-monitor transactions. Furthermore, they address
issues related to reliable execution of workfiows (both single and multiple) in
the presence of concurrency and failures.

Transactional workflows do not imply that workflows are similar or equiv-
alent to database transactions, or support all the ACID transaction properties.
They might not strictly support some of the important transaction features sup-
ported by TP monitors (e.g., concurrency control, backward recovery, and con-
sistency of data). Nevertheless, such workflows share the objectives of some of
the ATMs in terms of being able to enforce relaxed transaction semantics to a
set of activities.

In a somewhat conservative view, transactional workflows are workflows
supported by an ATM that defines workflow correctness and reliability crite-
ria [Georgakopoulos et al., 1995]. In such a workflow, the tasks are mapped
to constituent transactions of an advanced transaction supported by an ATM

10 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

[Georgakopoulos et al., 1994], and control flow is defined as dependencies be-
tween transactional steps. Similarly, in [Weikum, 1993] an extra control layer
in terms of dependencies is added to ATM to provide functionality to the trans-
actions running in a large-scale distributed information systems environment.

A WFMS may provide transactional properties to support forward recovery,
and use system and application semantics to support semantic based correct
multi-system application execution [Sheth, 1995, Krishnakumar and Sheth,
1995]. These could include transaction management techniques such as log-
ging, compensation, etc. to enable forward recovery and failure atomicity. In
addition, the workflow could exhibit transactional properties for parts of its exe-
cution. It might use transaction management technology such as transactional-
RPC between two components of a WEMS (e.g, scheduler and task manager),
an extended commit coordinator [Miller et al., 1996], or a transactional proto-
col (XA) between a task manager and a processing entity.

In our view, the scope of transactional workflows extends beyond the purview
of database transactions and ATMs. Workflow executions include tasks that
might involve database transactions; however, large-scale workflow applica-
tions typically extend beyond the data-centric domains of databases and in-
frastructures that inherently support transaction semantics (e.g., TP-monitors),
to more heterogeneous, distributed and non-transactional execution environ-
ments.

1.3.1 Previous Research on using Transactions for Workflows

Two major approaches have been used to study and define transactional work-
flows. The first one utilize a workflow model that is based on supporting or-
ganizational processes (also called business process modeling) as its basis, and
complements it with transactional features to add reliability, consistency, and
other transaction semantics. In the second approach, ATMs are enhanced to in-
corporate workflow related concepts to increase functionality and applicability
in real-world settings. The degree to which each of the models incorporates
transactional features varies, and depends largely on the requirements (such as
flexibility, atomicity and isolation of individual task executions and multiple
workflow instances, etc.) of the organizational processes it tries to model. In
the remainder of this section, we discuss some of the research that has been
done using ATMs and workflows.

ConTracts [Waechter and Reuter, 1992] were proposed as a mechanism for
grouping transactions into a multitransaction activity. A ConTract consists of a
set of predefined actions (with ACID properties) called steps, and an explicitly
specified execution plan called a script. An execution of a ConTract must be
forward-recoverable, that is, in the case of a failure the state of the ConTract
must be restored and its execution may continue. In addition to the relaxed

TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 11

isolation, ConTracts provide relaxed atomicity so that a ConTract may be in-
terrupted and re-instantiated.

Workflow applications are typically long-lived compared to database trans-
actions. A workflow is seen as a Long-Running Activity in [Dayal et al., 1990,
Dayal et al., 1991]. A Long-Running Activity is modeled as a set of execution
units that may consist recursively of other activities, or top-level transactions
(i.e., transactions that may spawn nested transactions). Control flow and data
flow of an activity may be specified statically in the activity’s script, or dy-
namically by Event-Condition-Action (ECA) rules. This model includes com-
pensation, communication between execution units, querying the status of an
activity, and exception handling.

Motivated by advanced application requirements, several ATMs have been
proposed (refer to [Chrysanthis and Ramamritham, 1991, Georgakopoulos and
Homick, 1994] for frameworks for defining and comparing ATMs, [Elma-
garmid, 1992] for several representative ATMs, for a representative model and
specification that support application specific transaction properties, and [Bre-
itbart et al., 1993, Hsu, 1993, Rusinkiewicz and Sheth, 1995] for earlier views
on relationships between workflows and ATMs). ATMs extend the traditional
(ACID) transaction model typically supported by DBMSs to allow advanced
application functionality (e.g., permit task collaboration and coordination as it
is required by ad hoc workflows) and improve throughput (e.g., reduce tran-
saction blocking and abortion caused by transaction synchronization). How-
ever, many of these extensions have resulted in application-specific ATMs that
offer adequate correctness guarantees in a particular application, but not in oth-
ers. Furthermore, an ATM may impose restrictions that are unacceptable in one
application, yet required by another. If no existing ATM satisfies the require-
ments of an application, a new ATM is defined to do so.

In [Georgakopoulos et al., 1994], the authors define an extended (advanced)
transaction framework for execution of workflows called the Transaction Spec-
ification and Management Environment (TSME). A workflow in this frame-
work consists of constituent transactions corresponding to workflow tasks. In
addition, workflows have an execution structure that is defined by an ATM;
the ATM defines the correctness criteria for the workflow. The TSME claims
to support various ATMs (extended transaction models) to ensure correctness
and reliability of various types of workflow processes. Extended transactions
consist of a set of constituent transactions and a set of dependencies between
them. These transaction dependencies specify the transaction execution struc-
tures or correctness criteria. A programmable transaction management mecha-
nism based on the ECA rules [Dayal et al., 1990] is used to enforce transaction
state dependencies.

Semantic transaction.models-aim.to.improve performance and data consis-
tency by executing a group of interacting steps within a single transaction and

12 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

relaxing the ACID properties of this transaction in a controlled manner. In
[Weikum, 1993], the author suggests that semantic transaction concepts be
merged with workflow concepts to promote workflow systems that are con-
sistent and reliable. The author defines a transactional workflow to be a control
sphere that binds these transactions by using dependencies to enforce as much
behavioral consistency as possible thereby enforcing reasonable amount of data
consistency.

The METEOR?! [Krishnakumar and Sheth, 1995] workflow model is an inte-
gration of many of the approaches described above. A workflow in METEOR
is a collection of multiple tasks. Each of the tasks could be heterogeneous
in nature. The execution behavior of the tasks are captured using well-defined
task structures. This model supports tasks that have both transactional and non-
transactional semantics. Groups of tasks along with their inter-task dependen-
cies can be modeled as compound tasks. The compound tasks have their task
structures too. Transactional workflows can be modeled using transactional
tasks and transactional compound tasks as the basis of the workflow model.
The METEOR; WFMS [Miller et al., 1996, Sheth et al., 1996b] is based on
the METEOR model. It extends the model in terms of providing better sup-
port for failure recovery and error handling in heterogeneous and distributed
workflow environments (see section 1.6.1 for additional details).

The Exotica project [Alonso et al., 1995a, Alonso et al., 1996b] explores
the role of advanced transaction management concepts in the context of work-
flows. A stated objective of this research is to develop workflow systems that
are capable enough (in terms of reliability, scalability, and availability) to deal
with very large, heterogeneous, distributed and legacy applications. One of the
directions of this project is to research the synergy between workflow systems
and advanced transaction models; the results that follow point in the direction
that workflow systems are a superset of advanced transaction models [Alonso
et al., 1996b] -since workflow systems incorporate process and user oriented
concepts that are beyond the purview of most ATMs. Partial backward re-
covery has been addressed in the context of the FlowMark WFMS [Leymann,
1995] by generalizing the transactional notions of compensation.

One of the projects in which transactional semantics have been applied to
a group of steps define a logical construct called a Consistency unit (C-unit)
[Tang and Veijalainen, 1995]. A C-unit is a collection of workflow steps and
enforced dependencies between them. C-units relax the isolation and atomicity
properties of transactional models. The authors also discuss how C-units can
be used to develop transactional workflows that guarantee correctness of data
in the view of integrity constraints that might exist across workflow processing
entities.

ThedNformation,CArrier,(INCA) [Barbara et al., 1996a] workflow model
was proposed as a basis for developing dynamic workflows in distributed en-

TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 13

vironments where the processing entities are relatively autonomous in nature.
In this model, the INCA is an object that is associated with each workflow and
encapsulates workflow data, history and processing rules. The transactional
semantics of INCA procedures (or steps) are limited by the transaction sup-
port guaranteed by the underlying processing entity. The INCA itself is neither
atomic nor isolated in the traditional sense of the terms. However, transac-
tional and extended transactional concepts such as redo of steps, compensating
stepsand contingency steps have been included in the INCA rules to account
for failures and forward recovery.

In the Nested Process Management environment [Chen and Dayal, 1996]
a workflow process is defined using a hierarchical collection of transactions.
Failure handling is supported using a two-phase approach. During the first
phase of recovery, a bottom-up lookup along the task tree is performed to de-
termine the oldest parent transaction that does not need to be compensated.
The next phase involves compensation of all the children of this parent. In this
model, failure atomicity of the workflow is relaxed in terms of compensating
only parts of the workflow hierarchy.

The Workflow Activity Model(WAMO) [Eder and Liebhart, 1995] defines a
workflow model that enables the workflow designer in modeling reliable work-
flows [Eder and Liebhart, 1996]. It uses an underlying relaxed transaction
model that is characterized by relaxing i) failure atomicity of tasks, ii) serial-
izability of concurrent and interleaved workflow instance executions, and iii)
relaxing isolation in terms of externalization of task results.

Thus we see that transaction concepts have been applied to various de-
grees in the context of workflows. They have been used to define application
specific and user-defined correctness, reliability and functional requirements
within workflow executions. In the next section, we discuss features specific
to transactions and ATMs that would be useful for implementing recovery in a
WEMS.

1.4 WORKFLOW RECOVERY

Reliability is of critical importance to workflow systems [Georgakopoulos et al.,
1995, Georgakopoulos, 1994, Jin et al., 1993]. WFMS should not only be func-
tionally correct, but should also be robust in the view of failures. Workflow
systems (both commercial and research prototypes) in their current state, lack
adequate support for handling errors and failures in large-scale, heterogeneous,
distributed computing environments [Georgakopoulos et al., 1995, Alonso and
Schek, 1996b, Kamath and Ramamritham, 1996a, Sheth et al., 1996a, Ley-
mann et al., 1996]. Failures could occur at various points and stages within the
lifetime of the workflow enactment process. They could involve failures asso-
ciated with the workflow tasks (such as unavailability of resources, incorrect
input formats, internal application failures, etc.), failures within the workflow

14 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

system components (such as schedulers, databases, etc.), and failures in the
underlying infrastructure (such as hardware and network failures). Reliabil-
ity in the context of workflows requires that tasks, their associated data, and
the WMFS itself be recoverable in the event of failure, and that a well defined
method exists for recovery.

A workflow process is heavily dependent on the organizational structure,
and business policies within an organization. Workflows are activities that are
horizontal in nature and are spread across the organizational spectrum as com-
pared to transaction processing activities (e.g., database transactions) that are
more vertical or hierarchical in nature and might form only part of the work-
flow process. In other words, hierarchical decomposition used for complex ad-
vanced transaction models is not sufficient for modeling workflows. A WFMS
needs to support recovery of its tasks, associated data and the workflow process
as a whole. The heterogeneous nature of workflow tasks and processing enti-
ties might preclude any transactional semantics that are required for assuring
transactional behavior of the workflow or the constituent tasks themselves. A
viable recovery mechanism should be consistent with and should support the
overall goal of the business process concerned.

Valuable research addressing recovery has been done in transaction manage-
ment and ATMs [Bernstein et al., 1987, Gray and Reuter, 1993, Korth et al,,
1990b, Moss, 1987, Waechter and Reuter, 1992, Chen and Dayal, 1996] (see
sections 1.2 and 1.3.1). A strictly data-centric approach has been used to ad-
dress recovery issues in transaction processing. The problem domain of recov-
ery in a WEFMS is broader than that of transaction systems and ATMs due to
its process-oriented focus, and diverse multi-system execution requirements.
Although the ideas proposed in ATMs are limited in terms of the domains and
environments they apply to, they are valuable in terms of their semantics and
overall objectives. In the next section, we discuss the value and applicability of
transaction concepts in the context of workflow recovery.

1.4.1 Transaction Concepts in Modeling Workflow Recovery

Earlier, we have discussed some of the ATMs that have been proposed in the
literature. Recovery involves restoration of state - a concept which is voiced
by transactional systems also. Later, we also reviewed some of the work in
transactional workflows, and different approaches for incorporating transac-
tional semantics into workflow models. We feel that transaction concepts are
necessary for a recovery mechanism to be in place; however, basing a work-
flow recovery framework on a transactional (or advanced) transactional model
would be naive.

As discussed in section 1.2.1, the hierarchical model in nested transactions
[Moss, 1982] allows finer grained recovery, and provides more flexibility in
terms of transaction execution. In addition to database systems, nested transac-

TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 15

tions can been used to model reliable distributed systems [Moss, 1987]. There
is a lot to learn from work done in nested transactions. It provides a model for
partitioning an application system into recoverable units; transaction failure is
often localized within such models using retries and alternative actions. Work-
flow systems can borrow these ideas to a great extent, and tasks can be retried
in the case of certain failures (e.g., failures related to unavailability of input
data, or inadequacy of resources for executing a task at a processing entity),
or alternate tasks can be scheduled to handle other more serious errors (e.g.,
when a certain number of retries fail, or when a task cannot be activated due to
unavailability of a processing entity) that might cause a task to fail.

In the work on nested process management systems [Chen and Dayal, 1996]

(discussed in section 1.3.1), the authors present a formal model of recovery
that utilizes relaxed notions of isolation and atomicity within a nested tran-
saction structure. Although, this model is more relaxed in terms of recovery
requirements as compared to nested transactions, it is strict for heterogeneous
workflow environments that involve tasks that are non-transactional in nature.
Moreover, the recovery model uses backward recovery of some of the child
transactions for undoing the effects of a failed global transaction. The back-
ward recovery approach has limited applicability in workflow environments in
which it is either not possible to strictly reverse some actions, or is not feasi-
ble (from the business perspective) to undo them since this might involve an
additional overhead or conflict with a business policy (e.g., in a banking appli-
cation).

The notion of compensation is important in workflow systems. Undoing of
incomplete transactions (or backward recovery) is an accepted repair mecha-
nism for aborted transactions. However, this concept is not directly applicable
to most real-world workflow tasks which are governed by actions that are in
general permanent (e.g, human actions and legacy system processing). One
can define a semantically inverse task (commonly referred to as compensat-
ing tasks), or a chain of tasks that could effectively undo or repair the damage
incurred by a failed task within a workflow. In addition to Sagas, semantic tran-
saction models have been proposed to address many such issues in which fail-
ure atomicity requirements have been relaxed. Compensation has been applied
to tasks and groups of tasks (spheres) to support partial backward recovery in
the context of the FlowMark WFMS [Leymann, 1995].

Work on flexible transactions[Elmagarmid et al., 1990, Zhang et al., 1994a]
discusses the role of alternate transactions that can be executed without sac-
rificing the atomicity of the overall global transaction. This provides a very
flexible and natural model for dealing with failures. These concepts are ap-
plicable in workflow environments also. A prototype workflow system that
implmentsyasflexiblestransactionymodel has been discussed in [Alonso et al.,
1996b].

16 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

In transactional models, the unit of recovery is a transaction. Each tran-
saction has a predefined set of semantics that are compliant with the transaction
processing system. The model for recovery in a workflow system is more in-
volved since the recovery process should not only restore the state of the work-
flow system, but should proceed forward in a manner that is compliant with the
overall organizational process.

Recovery of Workflow Tasks A task (activity or step) forms a basic unit
of execution within a workflow model. A task is a logical unit of work that is
used to satisfy the requirements of the business process that defines the work-
flow concerned. In database systems, it is sufficient to maintain before and
after images of the data affected by a transaction to guarantee enough infor-
mation needed to recover that transaction in case of its failure. Recovery of
tasks, therefore, should be addressed from a broader perspective; in addition to
focusing on data-centric issues, one must focus on the overall business model
associated with the actions within a task.

The tasks within a workflow could be arbitrarily complex and heterogeneous
(i.e., transactional and non-transactional) in nature. A workflow model pro-
posed in [Georgakopoulos et al., 1994] compares database transactions to tasks
within a workflow, thereby regarding a workflow task to be the unit of recovery.
This parallelism is valid when the tasks are relatively simple, obey transactional
semantics and are executing within an environment that can enforce the trans-
actional behavior of a group of tasks. Most real-world workflow applications
and run-time environments are far more complex in nature and may be spread
across arbitrary autonomous systems. Hence, a uniform recovery model based
solely on transactional assumptions is inapplicable to commercial workflow
systems.

Many task models have been defined for workflow systems [Attie et al.,
1993, Krishnakumar and Sheth, 1995, Rusinkiewicz and Sheth, 1995]. In spite
of this fact, it is difficult to determine the exact execution state of a task since
these task models do not model detailed task execution: One could implement
a workflow system involving special tasks that reveal their internal state to the
WEMS layer; however, this workflow solution is not general enough to handle
tasks that are diverse and arbitrarily complex in nature. Guaranteeing strict
failure atomicity akin to that in database transactions is therefore difficult for
workflow tasks. Hence, recovery of tasks should be addressed from a broader
perspective. One should focus on the overall business process model when
trying to decide the next action to be performed when resolving task failures.

In the case of non-transactional tasks, it is difficult to monitor the exact
state of the task once it has been submitted for execution. This lack of control
could-leave the system-in-an-undeterministic state in view of failures. In such a
scenario, automatic recovery of a failed task becomes impossible due to lack of
run-time feedback or transactional guarantees from the processing entities. The

TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 17

role of the human (e.g., workflow administrator) is important for recovery in
such situations for determining the state of the failed task based on information
that is external to the workflow system. In the METEOR; system [Worah,
19971, a special task is used to cleanup the remnants of such failures and to
restore the workflow system to a consistent state. It could involve the role of a
human or an application that is programmed to be able to reconfigure the data
and applications associated with a task to restore it to a consistent state.

Recovery of Workflow Data Data plays an important role in workflow
systems, as is in the case of a DBMS and a TP-system. Data recovery issues
have been studied extensively in the context of database systems. Logging
and shadow paging are common mechanisms used in transaction processing
to record state of critical data persistently. Several checkpointing mechanisms
have been discussed in literature [Bernstein et al., 1987] to enhance the perfor-
mance of the recovery process. These principles can be applied to workflow
systems in situations related to making the state of the workflow components
persistent and the recovery process more efficient. In the case of distributed
WEFMSs, it is also important to replicate data across machines to enhance data
availability in the view of hardware and network failures. This problem, once
again, has been studied extensively in the area of distributed databases; its ap-
plicability has also been studied in workflow systems [Alonso et al., 1995b] to
enhance their availability.

1.5 WORKFLOW ERROR HANDLING

Error handling is another critical area of workflow research that has not re-
ceived adequate attention [Georgakopoulos et al., 1995, Alonso and Schek,
1996b]. The cause of errors in workflow systems could be multifarious. Errors
are logical in nature; they could be caused due to failures within the workflow
system, or failures occurring at the task level.

Error handling in database systems has typically been achieved by abort-
ing transactions that result in an error [Gray and Reuter, 1993]. Aborting or
canceling a workflow task, would not always be appropriate or necessary in a
workflow environment. Tasks could encapsulate more operations than a data-
base transaction, or the nature of the business process could be forgiving to
the error thereby not requiring an undo operation. Therefore, the error han-
dling semantics of traditional transactional processing systems are too rigid for
workflow systems.

A mechanism for dealing with errors in an ATM for long running activities
was proposed in [Dayal et al., 1990, Dayal et al., 1991]. It supported forward
error recovery, so that errors occurring in non-fatal transactions could be over-
come by executing alternative transactions. Although, this model provides well
defined constructs for defining alternative flow of execution in the event of er-

18 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

rors, it is restrictive in terms of the types of activities (relaxed transactions)
and the operating environment (a database) that form the long running process
and therefore, it does not provide the error modeling capabilities of capturing
workflow errors.

We can characterize the types of errors arising in a WFMS into three broad
categories:

® [Infrastructure errors: these errors result from the malfunctioning of the
underlying infrastructure that supports the WFMS. These include com-
munication errors such as loss of information, and hardware errors such
as computer system crashes and network partitioning.

m System errors: these errors result from faults within the WFEMS software.
This could be caused due to faults in the hardware, or operating system.
An example is the crash of a workflow scheduler.

» Application and user errors: these errors are closely tied to each of the
tasks, or groups of tasks within the workflow. Due to its dependency on
application level semantics, these errors are also termed as logical errors
[Krishnakumar and Sheth, 1995]. For example, one such error could
involve database login errors that might be returned to a workflow task
that tries to execute a transaction without having permission to do so at a
particular DBMS. A failure in enforcing inter-task dependencies between
tasks is another example of an application error.

The above categorization is a descriptive model for categorizing errors within
WEFMSs. Large-scale WFMSs typically span across heterogeneous operating
environments; each task could be arbitrarily complex in nature. To be able to
detect and handle errors in such a diverse environment, we need a well-defined
error model that would help us specify, detect and handle the errors in a sys-
tematic fashion. In 1.6.1.3 we define a hierarchical error model that forms the
basis for handling errors in the METEOR, WEMS.

In the previous sections, we have discussed research done in the area of
ATMs, transactional workflows, and the problem of error handling and recov-
ery in WEMSs. In the next section we outline issues that are important for
implementing a reliable WFMS. In doing so, we discuss a specific example of
a WEMS that exploits many of the concepts from transactional systems and
ATMs to include support for error handling and recovery.

1.6 TRANSACTIONS, ATMS AND RECOVERY IN LARGE-SCALE
WFMSS

Pervasive network;connectivityycoupled with the explosive growth of the Inter-
net has changed our computational landscape. Centralized, homogeneous, and
desktop-oriented technologies have given way to distributed, heterogeneous

TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 19

and network-centric ones. Workflow systems are no exceptions. They would
typically be required to operate in such diverse environments in a reliable man-
ner. Implementation of error handling and recovery in a WFMS is affected
by numerous factors ranging from the underlying infrastructure (e.g., DBMS,
TP-monitor, Lotus Notes, CORBA, Web), architecture of the supporting frame-
work (e.g., centralized vs. distributed), nature of the processing entities (e.g.,
open vs. closed, transactional vs. non-transactional, human vs. computer sys-
tem), type of tasks (user vs. system, transactional vs. non-transactional), and
the nature of the workflow application (e.g., ad-hoc vs. administrative vs. pro-
duction). Most of these issues are beyond the purview of transaction-based
systems, and therefore have not been adequately tackled by them.

A single recovery mechanism cannot be applied to all workflow applica-
tions due to the diversity of their business logic. Also, the variations in WFMS
run-time architectures and execution environments would dictate the choice of
suitable recovery mechanisms. A workflow is a collection of tasks; the tasks
could be arbitrary in nature. It is impossible to include task specific semantics
within a generalized recovery framework since task behavior is orthogonal to
that of the workflow process. Nevertheless, a WEMS should provide the nec-
essary infrastructure to support error handling and recovery as needed by the
task. It should also provide tools to allow users to specify failure handling se-
mantics that are conformant with the governing business process model. This is
an important characteristic that differentiates failure handling in workflow sys-
tems from that in transaction processing where it suffices to satisfy the ACID
properties for transactions.

ATMs provide techniques for handling failures (see Section 1.2). However,
most of these ATMs do not discuss any aspects of implementation. Imple-
mentation of processes in workflow systems require support for business level
details such as groups, roles, policies, etc. ATMs are weak in this aspect, since
they define models that are focused towards the tasks themselves (in this case
advanced transactions). Therefore, workflow systems are implemented at a
higher level of granularity than ATMs. In fact, in [Alonso et al., 1996b] sagas
and flexible transactions have been implemented using a WFMS.

WEMS:s in distributed environments are dependent on inter-process commu-
nication across possibly heterogeneous computing infrastructures. In such sys-
tems, it is important that communication between processes is reliable. Trans-
actional RPC mechanisms have been used in distributed transaction processing
to guarantee reliable messaging between distributed processes. They can also
be incorporated into workflow systems [Wodtke et al., 1996] to guarantee trans-
actional messaging between the workflow components thereby increasing the
level of fault-tolerance of the WFMS infrastructure.

TP-monitorsthaverbeenrusedrextensively to guarantee transactional seman-
tics across distributed process spaces. They are, therefore, a viable middleware

20 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

technology for implementing workflow systems. However, their use within a
workflow environment comes with a lot of cost: 1) it is not feasible to impose
infrastructural homogeneity (e.g., use of TP-monitors) across autonomous or-
ganizations, and 2) it is very expensive to maintain and administer especially
when workflow process span multiple organizations. Emerging infrastructure
technologies such as Web, CORBA, and DCOM, on the other hand, provide
more open and cost effective solutions for implementing large-scale distributed
workflow applications [Sheth et al., 1996b, Palaniswami et al., 1996]. In partic-
ular, the CORBA standard [OMG, 1995b] includes specifications for services
[OMG, 1995a] such as the Object Transaction Service (OTS), the Concurrency
Control Service, and the Persistence Service that can be combined to form
a framework for achieving TP-monitor-like functionality in a HAD environ-
ments.

1.6.1 Error Handling and Recovery in the METEORy WFMS

The study of workflow systems is inter-disciplinary, and stems from areas such
as distributed systems, database management, software process management,
software engineering, and organizational sciences [Sheth et al., 1996a]. Error
handling and recovery are equally critical in these domains, and numerous so-
lutions have been suggested to address these problems [Bhargava, 1987, Bern-
stein et al., 1987, Cristian, 1991, Saastamoinen, 1995].

In this section, we present an error handling and recovery framework that
we have implemented for the distributed run-time of the METEOR, WFMS.
This solution has been based on principles and implementation ideas that we
have borrowed from related reseatch in databases, advanced transaction mod-
els, software engineering and distributed systems. Due to lack of space, brevity
is key in our discussions (for additional details, see [Worah, 1997]).

1.6.1.1 Overview of METEOR,; Workflow Model. The METEOR,
workflow model is an extension of the METEOR [Krishnakumar and Sheth,
1995] model, and is focused towards supporting large-scale multi-system work-
flow applications in heterogeneous and distributed operating environments. The
primary components of the workflow model include 1) processing entities and
their interfaces, 2) tasks, 3) task managers, and 4) the workflow scheduler.

® Processing Entity: A processing entity is any user, application system,
computing device, or a combination thereof that is responsible for com-
pletion of a task during workflow execution. Examples of processing
entitiesrinclude:word processors;yDBMSs, script interpreters, image pro-
cessing systems, auto-dialers, or humans that could in turn be using ap-
plication software for performing their tasks.

TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 21

m Interface: The interface denotes the access mechanism that is used by the
WEFMS to interact with the processing entity. For example, a task that
involves a database transaction could be submitted for execution using a
command line interface to the DBMS server, or by using an application
programming interface from within another application. In the case of a
user task that requires user-input for data processing, the interface could
be a Web browser containing an HTML form.

m Task: A task represents the basic unit of computation within an instance
of the workflow enactment process. It could be either transactional or
non-transactional in nature. Each of these categories can be further di-
vided based on whether the task is an application, or a user-oriented task.
Application tasks are typically computer programs or scripts that could be
arbitrarily complex in nature. A user task involves a human performing
certain actions that might entail interaction with a GUI-capable termi-
nal. The human interacts with the workflow process by providing the
necessary input for activating a user task. Tasks are modeled in the work-
flow system using well-defined task structures [Attie et al., 1993, Rusin-
kiewicz and Sheth, 1995, Krishnakumar and Sheth, 1995] that export the
execution semantics of the task to the workflow level. A task structure
is modeled as a set of states (e.g., initial, executing, fail, done), and the
permissible transitions between those states. Several task structures have
been defined - transactional, non-transactional, simple, compound, and
two-phase commit [Krishnakumar and Sheth, 1995, Wang, 1995].

» Task Manager: A task manager is associated with every task within the
workflow execution environment. The task manager acts as an interme-
diary between the task and the workflow scheduler. It is responsible for
making the inputs to the task available in the desired format, for submit-
ting the task for execution at the processing entity, and for collecting the
outputs (if any) from the task. In addition, the task manager communi-
cates the status of the task to the workflow scheduler.

» Workflow Scheduler: The workflow scheduler is responsible for coordi-
nating the execution of various tasks within a workflow instance by en-
forcing inter-task dependencies defined by the underlying business pro-
cess. Various scheduling mechanisms have been designed and imple-
mented [Wang, 1995, Miller et al., 1996, Das, 1997, Palaniswami, 1997],
ranging from highly centralized ones in which the scheduler and task
managers reside within a single process, to a fully distributed one in
which scheduling components are distributed within each of the distributed
task manager processes.

We will focus our discussions on a run-time implementation of a distributed
architecture for the METEORy WEMS. A recovery framework has been de-

22 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

fined for this architecture. The basic distributed model has been enhanced
with additional functionality to 1) handle various forms of errors, 2) use tran-
saction semantics at run-time, 3) monitor active workflow components, 4) re-
cover failed components, and 5) log critical data that is necessary to restore the
state of a failed workflow.

1.6.1.2 ORBWork: A Distributed Implementation of the METEOR;
WFMS. ORBWork is a distributed run-time engine for METEOR; WFMS.
It has been implemented using CORBA [OMG, 1995b] and Web infrastruc-
ture technologies [Sheth et al., 1996b, Das, 1997, Worah, 1997]. The for-
mer provides the necessary distribution and communication capabilities for the
workflow components, and the latter makes it possible for humans to inter-
act with the Object Request Broker (ORB)? based workflow layer. The main
components of ORBWork are shown in Figure 1.1. In this implementation,
task managers, recovery units, data objects, monitors, and clean-up tasks are
implemented as CORBA objects.

Host A Host B

Global Recovery Mansger

Cleanup Task

W ,

& cl + ket ."‘-. Host E
Host C . Objecs Reguest baoker ® o ol 3 Peeeraseorsasesssaratseranantennannatnasnnnnnen,
e sis s amanns ams dns siME AU SR AR UNSE LR s v, F I (CORBA) : -
: Local Recovery Manages : * S E : ﬁ
| & . T Ty S ;
: Data Objects : e b)4k - : Transactional _Task Manager :
AT
: e ik | Transscrionsl Task
3 4 2 -

Local Pensisience Store H

v
DBMS

Figure 1.1 System Schematic for the Recovery Framework in ORBWork

In METEORg, the workflow process that defines the overall organizational
process is captured in the form of a workflow map that is specified by a work-
flowsdesigner:» Thisydeterminessthesdata and control dependencies that need
to be enforced as part of the workflow scheduling process. Due to the dis-
tributed nature of the workflow engine, ORBWork does not have a centralized

TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 23

scheduling entity. The scheduling mechanism is embedded in each of the task
managers.

Each task managers performs four primary functions: 1) task activation, 2)
error handling and recovery of task and its own errors, 3) logging of task inputs,
outputs, and its internal state, and 4) scheduling of dependent task managers as
defined by the workflow process. Task managers communicate with each via
the ORB using object method invocations. Due to the location transparency
offered by CORBA, they are able to communicate seamlessly irrespective of
the host they execute on.

Input and output data elements to the tasks are represented as CORBA ob-
jects internal to ORBWork. These CORBA objects are wrappers around the ac-
tual data elements. This allows workflow data objects to be distributed within
the ORB environment. Task managers logically enforce workflow data depen-
dencies and pass data by exchanging references to these data objects.

User tasks have associated “to-do” worklists (not shown in the figure) that
provide a list of pending tasks for the user. User inputs form one of the implicit
dependencies for a user task manager. User (human) tasks communicate with
the task managers using HTML forms and Common Gateway Interface (CGI)
functionality provided by Web servers. In our current implementation, CGI
scripts are implemented as CORBA clients to user task manager objects. Ref-
erences to CORBA objects that encapsulate the user provided data are passed
as inputs to the task manager.

ORBWoirk is subject to numerous errors and failures. The architecture of
ORBWork, as described above, does not provide support for error handling,
other than what is already inherent to the components themselves. The dis-
tributed nature of our workflow architecture alleviates problems associated with
a single point of failure. This allows scope for incorporating fault-tolerant fea-
tures into the framework. However, distribution adds to the complexity of the
system in terms of management of the various components and detection of
failures. This problem is compounded due to the asynchronous communication
paradigm used in workflow communication models. Moreover, the communi-
cation infrastructure is subject to failures, and could adversely affect workflow
enactment. In the following two sections, we describe the error model that
we have used to capture such errors, and the failure handling components that
form our recovery framework. For a detailed discussion on ORBWork, see
[Das, 1997].

1.6.1.3 Modeling Errors in METEOR;. The METEOR; error model
has been defined in a hierarchical manner. We have based it on the layered
nature of the METEOR, workflow model. It enables us to describe and clas-
sifysthe-various-errorssthat-occur-during workflow execution. This, in effect,
makes it possible to modularize our error handling algorithms during workflow
execution. Errors are detected and masked as close to the point of occurrence

24 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

as possible to prevent them from propagating to other, unrelated components
of the WFMS. We use a three-tiered approach to classify errors within the
METEOR; workflow model:

1. Task and Workflow Errors:. this class forms the lowest level within our
hierarchy and includes all errors that are specific to tasks, and their inter-
task dependencies. Application and user errors (as discussed in Section
1.5) are defined and modeled at this level. The workflow designer is
responsible for defining these errors during the workflow definition pro-
cess. The workflow system does not preclude a task from handling its
errors on its own; in such cases, only unhandled errors would be cate-
gorized as task errors within the WFMS. Some of these errors may have
implications on the whole workflow process. A task error that cannot be
resolved is eventually reported to its task manager; such an error falls into
the category of task manager errors.

2. Task Manager Errors: this class of errors involves all task errors that
could not be resolved at the task level (as described earlier), and errors
that are specific to the task manager itself. For example, the latter in-
cludes errors such as
= not being able to prepare the inputs for the task,
= not being able to submit a task for execution,

= not being able to recover the state of task during failure recovery,
and

= not being able to handle a task error that might have occurred.

A task manager error that remains unhandled is reported as a workflow
error to the scheduler.

3. WFMS Errors: These are the highest level of errors within our model and
include

m system errors that affect the task scheduling mechanism,

= communication errors between the scheduler and the task managers,

» other failures in workflow components that are common to all in-
stances of a workflow type (e.g., failure recovery units, log man-
agers, etc.), and

= errors that could not be handled at the level of the task manager.

In our model, task and workflow errors are logical in nature. Error handling at
thisrlevelrisrachieved:by retries;raborts; cancellations, and by trying alternate
tasks. Task manager and WFMS errors are system errors caused due to failures
within the WEFMS software. Task manager errors are either handled at the level

TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 25

of the task manager itself (e.g., retrying task submission for a task that cannot
be submitted). WEMS errors are handled by the recovery components within
the WFMS, or by a human that would be provided with information necessary
to handle the error.

Principles relating to classification of errors, and handling them in a modular
fashion have been commonplace in computer architecture, programming lan-
guages, and software engineering. We have mapped the ideas to our workflow
model, and have defined the error-handling semantics so that they are in syn-
chrony with the overall business process that defines the workflow. Although,
this model has been applied within the METEOR WEFMS, in principle, it is
applicable to any workflow model that has a well-defined modular architecture.
The error handling capabilities in ORBWork, are developed on the basis of this
error model.

1.6.1.4 Recovery Framework in ORBWork. In this section, we de-
scribe the recovery framework for ORBWork (see Figure 1.1). In defining
the recovery framework, we have extended the ORBWork workflow engine in
terms of being able to handle failures ranging from the task level to the level of
the workflow system components. The recovery model assumes a distributed,
component-based architecture for the WFMS, and a communication mecha-
nism (in this case CORBA) that makes it possible to interact with components
across host boundaries.

Persistence is an essential part of our recovery framework. We have used
an object-oriented approach wherein the various workflow components are re-
sponsible for logging their respective states to stable storage. This approach
is very similar to the notion of recoverable objects in the distributed object-
oriented framework of Arjuna[Shrivastava et al., 1991]. In our model, data
objects inherit from a base interface that attributes it with capabilities to save
and restore its state at runtime from stable storage. A Local Persistence Store
(LPS) is used as the stable storage mechanism for logging local data critical for
recovery purposes. We have used a DBMS as the basis for our LPS. A DBMS
provides transactional capabilities to log data. A Global Persistence Store is
used for logging at the level of the GRM. Logging is done at various stages
within the workflow enactment process. For example, 1) task Managers log the
state of their tasks (including error codes returned by the task, for future de-
bugging and error recovery), inputs that they receive from other task managers,
and outputs that they send out to dependant task managers; 2) data objects log
the state of their data they encapsulate.

Failures in distributed systems are hard to detect, unless there is a fault-
tolerant detection mechanism in place. This problem is compounded espe-
cially.when.most-of the.components,communicate in an asynchronous mode.
Distributed workflow systems fall into this category due to their asynchronous
coordination model. In ORBWork, we have provided additional services for

26 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

monitoring distributed components, to address the issue of failure detection.
In this regard, we have borrowed ideas from other work done in reliable dis-
tributed systems [Birman and Renesse, 1994, Maffeis, 1996].

Task Managers and data objects on each host are monitored by a Local Re-
covery Manager (LRM) process executing on the same machine. On startup,
the task managers and data objects, register with the LRM on their host. Once,
these components are no longer required within the workflow process, they
deregister from the LRM. The LRM maintains a watch-list of currently reg-
istered components that are supposed to be executing as part of the workflow
process instance on its host. When an object registers with the LRM, the LRM
logs this message and appends it to the list. On deregistration, these objects
are removed from the list. The LRM contains a watchdog that periodically,
polls each of the components on the watch-list to ensure their liveliness. When
a failed component is detected, the LRM reactivates the component, which in
turn, restores its own state from local logs. The LRM checkpoints it logical
view of the local system to the local log to enable its own recovery. In addition
to the LRM, each host contains a daemon process called the Local Activation
Daemon (LAD) (not shown in the figure) that is endowed with the ability to
create processes (for the various CORBA objects) on the various hosts.

A Global Recovery Manager (GRM) executing on a reliable host in the
workflow execution environment monitors the liveliness of all the LRMs and
is responsible for reactivating any failed LRMs. On recovery, the failed LRMs
synchronize the state of their respective local systems based on their local logs
and create any task managers that might have failed in the interim. Due to
the infancy of the CORBA standard, and unavailability of many of its object
services, we had to rely on programmatic efforts to implement many of the
features that we would have otherwise liked to have been supplied by the ORB
vendor. The implementation of error handling is achieved via the use of ex-
ceptions and try-catch blocks that help to isolate the normal flow of execution
from the abnormal case during run-time.

Local configuration files (not shown in the figure) are used on each host by
the LAD. These files are used for directory lookup for the various components
(i.e., task manager, data object, LRM, GRM) during activation or recovery of
the processes.

During the definition of the workflow design, it might not be feasible to
capture all errors and causes of failures that might occur during the enactment
process. Also, especially in the case of non-transactional tasks, it is not always
possible to undo the effects of a task that might have completed partially. We
therefore feel that the role of a human is indispensable within the workflow re-
covery framework. In our model, we have allocated a special human-performed
task; calledsthe cleanupitasktosserve the functionality of bringing the system
to a consistent state after such irrecoverable failure. This mode of restoration is

TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 27

used only when the WFMS is unable to handle the recovery process automati-
cally.
Let us summarize the main characteristics of our recovery framework.

» Workflow recovery is implemented in a distributed CORBA and Web
based execution environment.

®= A notion of hierarchical monitoring of workflow components has been
used to detect failures, and to initiate the recovery process (i.e., GRM
monitors the LRMs; LRMs monitor task managers and data objects; task
managers monitor tasks). This allows failures to be localized, and their
effects to be masked as close to the point of occurrence as possible.

m The recovery model ensures that there is no single point of failure. There-
fore, the failure of a host does not significantly affect the performance of
tasks within another (unless they are directly dependant on each other).

s The performance of the workflow system would degrade progressively
in the case of failures; however, once the failure has been restored, the
WEMS would execute normally.

s Each workflow component is responsible for logging its own state. The
persistence mechanism used is also local to the component itself.

s The workflow components are responsible for managing their own recov-
ery actions once they have been recreated.

s The recovery mechanism is semi-automated. The role of the human is
crucial both during the workflow design process and the enactment. The
workflow designer specifies the run-time behavior of the error handling
and forward recovery mechanism. The workflow administrator is respon-
sible for fixing drastic system failures (e.g., machine crash, network par-
titioning), and for cleanup of failed tasks that cannot be handled by the
WEMS.

s The distribution and hierarchical nature of the recovery mechanism makes
the system scaleable and manageable.

In this section we have briefly described the design and implementation
of error handling and recovery in the distributed run-time of the METEOR,
WEFMS (see [Worah, 1997] for more details). We have used this discussion
to illustrate the applicability of concepts and basic mechanisms from tradi-
tionalyand,ATMs,withinya,practicalyworkflow execution environment. Also,
our discussion is suggestive of the need to look for solutions beyond ATMs for
addressing reliability issues in WEMSs.

28 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

1.7 TYPES OF TRANSACTIONS IN THE REAL-WORLD:
BEYOND DATABASE TRANSACTIONS

As practicing researchers, the idea of using related transaction models for mod-
eling workflows was appealing to us. We felt that such a model could provide
a rigor or structure that was lacking in the work on workflow management
[Ansari et al., 1992, Breitbart et al., 1993]. There are few, if any, examples of
successes in developing systems that implement ATMs for significant commer-
cial, large-scale multi-system applications.

Requirements of such applications include:

1. capability to explicitly define the functionality and organizational struc-
ture of organizational process involved,

2. support of coordination and execution of tasks in heterogeneous intra-
and inter-enterprise environments,

3. modeling and support for human involvement with the run-time system,
and

4. error handling and failure recovery.

Workflow management is specifically defined to address these real-world
challenges. It provides the tools to integrate humans, computer systems, infor-
mation resources and organizational processes into a unified solution. Hence,
the requirements of WFMSs are far more challenging than those faced by cur-
rent database systems [Alonso and Schek, 1996b]. In workflow applications,
database resources might comprise only a part of the entire solution. For a task
that entirely interacts with a DBMS, executing it as a transaction is often a de-
sirable choice. At the same time, workflows involve other user and application
tasks (e.g., tasks that interact with legacy systems) that are non-transactional in
nature.

Due to the wide acceptance and applicability of workflows to application
domains that extend beyond transaction based (primarily database related) en-
vironments, the term transaction is being used in a more loose manner with
various connotations. These interpretations are based on: 1) the type of tasks
and processing entities that are part of the workflow process, 2) the applica-
tion domain or semantics of the organizational process that is being modeled,
3) the communication infrastructure that is used to develop the WFMS, and 4)
transactional or advanced transactional semantics (such as relaxed isolation and
atomicity) that can be attributed to the tasks, sub-workflow, or the workflow as
awhole: It-is-important,to.understand.each of these interpretations to be able to
appreciate the similarities and differences between transactions from the world
of database systems and those involved in the realm of multi-system workflow

TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 29

management systems. Let us consider some of the frequently encountered in-
terpretations for the term transactions in the context of real-world workflow
applications and WFMS that support workflow applications:

1. Task specific interpretation in databases and distributed transaction
processing. In general, a workflow task is considered to be a black box
that is functional in nature, i.e., the functionality of the task is orthogonal
to that of the workflow process [Alonso et al., 1995b]. The tasks them-
selves could be transactional or non-transactional in nature [Rusinkiewicz
and Sheth, 1995, Krishnakumar and Sheth, 1995]. Transactional tasks are
those that minimally support the atomicity property and maximally sup-
port all ACID properties of traditional transaction models [Miller et al.,
1996, Krishnakumar and Sheth, 1995]. These tasks typically include
those that interact with a DBMS by using BEGIN_ TRANSACTION -
END_TRANSACTION semantics, contracts (stored procedures), and two-
phase commit (2PC) tasks [Wang, 1995, Miller et al., 1996] for synchro-
nizing transactions across multi-DBMSs. In addition, tasks that use the
XA-Protocol [Gray and Reuter, 1993] based RPC to communicate with
transactional processing entities such as a TP-monitor in a distributed en-
vironment [Wodtke et al., 1996] can also be included in this category.
Non-transactional tasks are used to include applications that cannot en-
sure isolation or atomicity as a part of the workflow process. Such task
types are commonplace in the real-world and involve activities requiring
interaction with humans, legacy systems, and others that interface with
other processing entities that do not provide transactional support (e.g.,
HTTP servers, Lotus Notes, file systems, word processors, spreadsheets
and decision support systems).

2. Domain specific interpretation. The move from a paper-based society
to a paper-less one, and the increasing popularity of electronic commerce
have led to evolution of standards for electronic data exchange across
organizations. Some of these include (EDI) standards such as ANSI
Accredited Standards Committee (ASC) X12 that are used in numerous
commercial settings (e.g., ANSI 270 and 271 transactions for healthcare
eligibility inquiry and response used in [Sheth et al., 1996b]), and the
ANSI HL7 standard that is used specifically in the medical domain. The
term transaction in this setting refers to the exchange of sufficient data
in a standard electronic format necessary to complete a particular busi-
ness action often using domain specific information. This view of a tran-
saction tends to focus more on business requirements and contracts rather
than on the need for maintaining data consistency within a database or to
support-atomicity-or-other-transactional property between communicat-
ing processes or for a RPC call. Workflow technology is being applied
in various forms to application domains such as manufacturing, bank-

30 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

ing, healthcare and finance that use domain specific transaction formats
extensively. One of the tasks within a workflow process could involve
sending data from one information system to another using an EDI tran-
saction. At the receiving end, another workflow task could write the data
that it receives to a DBMS in a transactional (having ACID properties)
manner. The semantics associated with each of these transactions are dif-
ferent. Hence, the WFMS would have to be designed so that it can deal
with different transaction forms in an appropriate manner.

3. Business-process specific interpretation. Database transactions and tran-
saction processing aim at preserving data consistency and ensuring reli-
ability in case of faults and failures. These semantics cannot be applied
directly to workflow systems since tasks within a workflow process are
both transactional and non-transactional in nature. However, at the same
time, workflow systems should be correct and reliable. Correctness and
reliability in the case of workflow systems is more applicable from a
broader perspective - that of the organizational process involved in ad-
dition to the data that forms a part of the process. According to [Eder and
Liebhart, 1995], a workflow transaction should ensure consistency from
the business process point of view. The notion of a workflow transaction
according to this view, is broader as compared to that of traditional trans-
actions. Implementation support for such a concept would require an
additional layer of control than that provided in transaction processing
since workflows include features (e.g., roles, worklists, error handling)
that are not available in (advanced) transaction models and transaction
processing systems.

4. Infrastructure specific interpretation. Workflow management systems
are large-scale applications that can be implemented using various in-
frastructure technologies such as Customized Transaction Management
(CTM) [Georgakopoulos et al., 1995], Distributed Object Management
specifically using CORBA [Georgakopoulos et al., 1994, Miller et al.,
1996, Sheth et al., 1996b, Wodtke et al., 1996, Schuster et al., 1994],
World Wide Web [Palaniswami et al., 1996, Sheth et al., 1996b, Tech-
nologies, 19951, TP-monitors [Wodtke et al., 1996], Lotus Notes [Rein-
wald and Mohan, 1996] and security services (as in secure transactions
supported in the electronic commerce and Web-based services). The con-
cept of transactions has been addressed in many of these technologies
to some extent. For example CORBA provides an Object Transaction
Service as a part of the Common Object Services Specification [OMG,
1995a] that enables objects in distributed environments to take part in a
transactional-context; TP-menitors also provide transactional semantics
in a distributed environment. The HTTP protocol used in the Web para-
digm, on the other hand, does not provide any transactional semantics.

TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 31

Hence, we see that different interpretations of transactions are supported
by each of these infrastructures.

From the above discussion, it is important to observe that the notion of
transactions in workflow management is more general compared to that in
transaction processing and DBMSs.. Its interpretation could involve various
variables associated with the factors mentioned above. Unlike advanced tran-
saction systems, WFMS interact with database systems if required as part of
the organizational process, however, this is not their primary focus.

1.8 CONCLUSION

We view workflow management as an attractive approach to programming in
the large for enterprise applications. Tasks within a workflow are modeled at a
higher degree of granularity than traditional database transactions (i.e., compo-
nent transactions in a ATM or subtransactions in a distributed transaction). The
tasks themselves could be either transactional (e.g., database transactions, and
processes interacting with a TP-monitor) or non-transactional (e.g., human-
oriented activities, and processes that do not observe one or more of the tran-
saction properties). Also, most real-world workflow processes involve acti-
vities that are long running in nature and execute in distributed and heteroge-
neous environments. The processing entities that execute or carry out a task
might not support the protocol for guaranteeing transaction behavior. At the
same time, it is desirable that workflow systems be reliable and ensure correct
execution of processes just as transactions guarantee such characteristics for
ensuring data consistency. It has been accepted that strict ACID transactions
do not have direct applicability in the workflow domain as workflow systems
differ to a large degree from traditional database systems.

In our perspective, the role of ATMs in workflow systems is of a supportive
nature. Advanced transaction modeling concepts are quite restricted in terms
of being directly applicable in process-oriented, large-scale workflow applica-
tions that run in HAD computing environments. Workflow systems today are
still weak in terms of characteristics such as fault-tolerance, consistency, and
in their support for recovery in case of exceptions and failures. ATMs have ad-
dressed most of these problems in the domain of database systems. Research
in the areas of workflow systems can benefit from these approaches from a
conceptual point of view.

Transactional semantics such as atomicity and isolation in their strict sense
are not practical in workflow systems since tasks in a workflow domain are gen-
erally long-lived and could themselves be non-transactional in nature. Many of
the solutions for recovery in transaction processing systems can be used to ad-
dress.recovery. issues.in. workflow. systems, for example, advanced transaction
concepts such as compensation can be mapped to the workflow domain in terms
of a compensating task that could be used to undo (often partially) what was

32 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

done by an incomplete task; logs similar to those in transaction processing
could be maintained for recording the history of the workflow process, thereby
aiding in the recovery process [Krishnakumar and Sheth, 1995, Alonso et al.,
1995b, Eder and Liebhart, 1996].

To address many of these advanced issues, workflow systems should borrow
ideas that have been used effectively in concurrent, large-scale distributed and
database systems, but should not rely entirely on them as many of these systems
have developed models for environments that are limited in scope as compared
to that in workflow systems.

In conclusion, we summarize the observations we have made in this chapter:

s There are several interpretations for transactions in organizational pro-
cesses today and all or most of them may need to be accommodated in a
workflow technology that supports organizational processes.

» Features offered by ATMs meet a very restricted subset of requirements
of large-scale enterprise-wide workflow systems (see the appendix for a
normative comparison of ATMs and workflow systems).

m We do not see ATMs as being a primary basis for modeling and exe-
cuting workflow systems that have real-world commercial applicability.
However these models provide useful features (e.g., relaxed atomicity,
relaxed isolation, concurrency control and recovery) which can be used
in components (e.g., tasks) that form a part of a WFMS. Traditional tran-
saction processing and ATMs provide valuable concepts that can be ap-
plied towards partly solving the problem of error handling and recovery
in WFMSs.

s Implementing reliable large-scale WFMSs involve requirements that are
beyond the capabilities of transaction systems and ATMs (e.g., distribu-
tion of the workflow architecture, heterogeneity of the operating environ-
ment, business process governing the workflow, organizational structure
of the enterprise, nature of the tasks, etc.). A lot of valuable research has
been done on error handling and recovery in the areas of distributed sys-
tems, software engineering, and organizational sciences. Research and
development in the domain of reliable WFMS should leverage these ef-
forts to supplement the limitations of traditional transaction and ATM
based systems.

There is a need for multi-disciplinary research to address the challenging
issues raised by emerging workflow technology. Humans are an essential part
of any organizational process, and human work involves many diverse issues.
Therefore, research.involving expertise from multiple disciplines is most likely
to bring the highest return. Information is another critical asset of any organiza-
tion, as discussed in [Sheth et al., 1996a]; we believe that more human-centric

TRANSACTIONS IN TRANSACTIONAL WORKFLOWS 33

approaches with integral support for information management are needed for
a successful workflow technology. We need to look beyond the capabilities
provided by transaction processing systems and ATMs in modeling the com-
plexities of large-scale, mission-critical workflow applications of the future.

Notes

1. METEOR refers to the project carried out at Bellcore. METEOR is its follow on at the
LSDIS Lab of the University of Georgia.

2. The Object Request Broker forms the core of the CORBA model; it is the middleware
layer that makes it possible for distributed objects to communicate with each other. For details
see [OMG, 1995b}.

Acknowledgments

METEOR; is a group project, and our discussion related to it reflects contributions of
numerous past and current members of the project (http://Isdis.cs.uga.edu/workflow).
Current active members include, S. Das, Prof. K. Kochut, Prof. J. Miller, D. Palani-
swami, Prof. A. Sheth, D. Worah and K. Zheng.

This research was partially done under a cooperative agreement between the Na-
tional Institute of Standards and Technology Advanced Technology Program (under
the HIIT contract, number 70NANBS5H1011) and the Healthcare Open Systems and
Trials, Inc. consortium. See URL:http://www.scra.org/hiit.html. Additional partial
support and donations are provided by Post Modern Computing, Illustra Information
Technology, and Hewlett-Packard Labs.

34 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Appendix: A Normative Perspective

Advanced Transaction
Models

Workflow Systems

Theoretical
Foundation

Granularity
Methodology

Correctness Criteria

Failure Atomicity
Concurrency Control
Recovery

Error Handling
Task/Activities

Processing Entities

Coordination Support
Modeling Organiza-
tional Structure
Worklists

Flexibility
Implementation Status

Applicability to Non-
DBMS applications

Usually good theoretical
basis.

Transactions.
Data-centric. Emphasis
on data consistency.
Serializability.

Inherent.

Inherent.

Well-defined. Rollback
and compensation.

Limited.
Supports
only.

Usually DBMS.

transactions

Limited.
Usually absent.

No support.

Varied.
Very few exist.

Very limited.

Weak dependency, ex-
cept for scheduling com-
ponents. Driven by prac-
tical considerations.
Tasks, activities, or steps
Process-centric. Empha-
sis on task coordination.
Primitive, often limited
to scheduling.

Not part of most models.
Limited support.
Insufficient support.
Forward recovery when
supported.

Very limited.

Supports both human
and application tasks.
Heterogeneous systems
(e.g., DBMSs, TP moni-
tors, legacy applications,
humans)

Inherent.

Varies significantly.

Strong support.

Good.

Numerous commer-
cial products and few
research prototypes.
Extensive.

2 WORKFLOW MANAGEMENT: THE
NEXT GENERATION OF DISTRIBUTED
PROCESSING TOOLS

Gustavo Alonso and C. Mohan

Abstract: Workflow management systems have attracted a great deal of atten-
tion due to their ability to integrate heterogeneous, distributed applications into
coherent business processing environments. In spite of their limitations, existing
products are enjoying a considerable success but it would be a mistake not to try
to see beyond current systems and applications. In today’s computer environ-
ments, the trend towards using many small computers instead of a few big ones
has revived the old dream of distributed computing. There is, however, a signifi-
cant lack of tools for implementing, operating and maintaining such systems. In
particular, there are no good programming paradigms for parallel architectures in
which the basic building blocks are stand alone systems. Workflow management
provides this key functionality, suggesting its potential as crucial component of
any distributed environment. This chapter describes in detail such functionality
and provides some insight on how it can be applied in environments other than
business processing.

2.1 INTRODUCTION

One of the basic platforms in which to implement generic distributed systems is
commodity hardware and software, usually in the form of clusters of worksta-
tions connected via a network. The continuous increase in computing power,
storage capacity, and communication speed has made these share nothing con-
figurations viable and cost effective alternatives to more tightly integrated mul-
tiprocessor architectures. There is also the added advantage of having most of
the necessary infrastructure already|in place, both in terms of hardware (clus-

36 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

ters of personal computers connected by a Local Area Network) and software
(the many existing applications). The only component missing in such environ-
ments is the necessary glue to make a coherent whole out of many autonomous,
heterogeneous, loosely coupled building blocks. This problem has been ad-
dressed from many different perspectives, federated database systems [Schaad
et al., 1995], TP-monitors [Gray and Reuter, 1993, Obermack, 1994], persis-
tent queuing [Alonso et al., 1995a, Mohan and Dievendorff, 1994}, CORBA
[OMG, 1995b], process centered software engineering [Ben-Shaul and Kaiser,
1995] and workflow management systems [Hsu, 1995] being among the best
examples.

From a practical point of view, these different approaches can be roughly di-
vided in four categories: interface definition, communication, execution guar-
antees, and development environment. These four categories also correspond
to the functionality needed in a distributed environment. In spite of this, exist-
ing products and research efforts tend to emphasize only one of the categories,
e.g, TP-monitors for execution guarantees; CORBA as an interface definition;
queuing systems as communication platforms; or workflow systems for devel-
oping distributed applications. Such narrow focus is one of the major limita-
tions of these approaches. Users or designers interested in getting two or more
of the four categories of functionality have to resort to combine several heavy-
weight solutions, which adversely affects performance and usability. Examples
to prove this point abound, perhaps the most clear one being the transactional
services described in the CORBA standard. These services can only be imple-
mented using what today is known as a TP-monitor. In fact, current implemen-
tations do exactly just that: bundle together a CORBA implementation and a
commercial TP-monitor. Since both were designed as stand-alone systems and,
in practice, must solve many similar problems, the resulting system incorpo-
rates a great deal of redundancy and mismatches. As a result, performance and
the overall functionality are adversely affected. A more reasonable approach
would be to implement the CORBA standard with the transactional services in-
cluded as part of the original design instead of as an orthogonal module. This
would still not be enough, howeyver, as the resulting system would lack, for in-
stance, a development environment. To address this latter point, the OMG (Ob-
ject Management Group) and the Workflow Management Coalition are joining
efforts to define a CORBA Workflow Facility. But as with the transactional
services, such facility will only be truly operational and useful when the de-
sign incorporates and integrates all these different technologies from the very
beginning and not as separate tools.

This same example occurs in many other environments and products. The
underlying problem is that no system incorporates the four categories of func-
tionality-inrthe designrandyhenceyitiisnot possible to rely on a truly integrated
system. But building such system is only possible if the existing partial solu-

WFMS: THE NEXT GENERATION OF DISTRIBUTED PROCESSING TOOLS 37

tions are first generalized and their functionality becomes available in the form
of open systems. It is possible to identify trends in industry that point clearly
into this direction (the example of CORBA is one, the incorporation of transac-
tional guarantees and queuing systems in workflow tools is another), but much
remains to be done. The role workflow management systems will play in fu-
ture computing environments is directly related to the idea of integrating the
four categories of functionality. One of the factors that have made workflow
management so successful is the support they provide for developing complex
applications over distributed systems using already existing tools. This same
concept can be generalized, turning workflow management into one of the ba-
sic technologies for developing large scale distributed applications based on
autonomous components. Thus, workflow management should evolve as part
of larger, tightly integrated architectures. In order for this to happen, work-
flow management needs to be reinterpreted from a perspective going beyond
current products. This includes generalizing the notion of process, as has been
suggested by several workflow designers [Emmrich, 1996, Leymann, 1995],
instead of focusing solely on business processes reengineering. In this way,
a workflow management system can become a very high level programming
language linking, within a single control logic, heterogeneous applications re-
siding over a wide geographic area. Additional technology such as CORBA,
queuing systems or TP-monitors will then complete the integrated distributed
system in which to exploit the coarse parallelism and distributed characteristics
of workflow processes.

2.2 WORKFLOW MANAGEMENT SYSTEMS

2.2.1 Workflow Concepts

Workflow management is a relatively new term. The ideas and concepts asso-
ciated with it, however, have been around for quite some time. The notion of
workflow management can be traced back to prototypes and research carried
out many years ago. Some [Swenson et al., 1994] propose as the earliest an-
cestors the SCOOP project [Zisman, 1978] and Office Talk [Ellis et al., 1991].
Others see the roots of workflow management in the work of imaging com-
panies [Frye, 1994]. In the database community workflow ideas have been
proposed under many disguises, mostly in the form of advanced transaction
models [Elmagarmid, 1992, Waechter and Reuter, 1992, Garcia-Molina et al.,
1991, Kreifelts et al., 1991, Nodine and Zdonik, 1990]. The Workflow Manage-
ment Coalition [Hollinsworth, 1996] suggests no less than six areas that have
had a direct influence on the development of workflow management as it is to-
day: image processing, document management, electronic mail and directories,
groupware, transactional_systems, project support applications, business pro-
cess re-engineering, and structured system design tools. Even one of the most
popular workflow modeling paradigms [ActionTechnologies, 1993, Medina-

38 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Process Model

Transition

Figure 2.1 Basic components of a workflow process

Mora et al., 1993] can be traced back to early work on artificial intelligence
and speech theory. In general, the need for workflow functionality was iden-
tified long ago by different communities as they realized the potential offered
by computers and communications. For instance, just in the last decade, sim-
ilar ideas were discussed in areas such as paperless office [Tsichritzis, 1982],
office automation [Bracchi and Pernici, 1985], groupware [Ellis et al., 1991],
or computer supported cooperative work [Kreifelts et al., 1991].

In spite of this early interest, the technology to develop full functional sys-
tems has become available only in the last few years. To certain extent, work-
flow management has found its window of opportunity in this decade thanks
to organizational management trends such as business process reengineering
[Hammer and Champy, 1993]. As a result, it is uncommon to find a product
that it is not directly associated with the reengineering world. But this is likely
to change in the future as workflow systems diversify and incorporate ideas
from other areas.

2.2.2 Process Representation

The notion of process is central to any workflow system. A process is a com-
plex sequence of computer programs and data exchanges controlled by a meta-
program. It is usually represented as an annotated directed graph in which
nodes represent steps of execution, edges represent the flow of control and
data among the different steps, and the annotations capture the execution logic.
Other forms of representation are possible (for instance based on rules [Ben-
Shaul and Kaiser, 1995]) but the underlying concepts are essentially the same
regardless of the representation. These are shown in Figure 2.1 and can be
described as follows:

Execution unit is the basic instruction of the workflow language. It can be
compared with a procedure call in a programming language. Similarly to pro-

WFMS: THE NEXT GENERATION OF DISTRIBUTED PROCESSING TOOLS 39

cedure calls, it can correspond to an internally defined procedure (a process),
to a structured block of instructions (a block), or to a remote procedure call to
an external application (an activity). Associated with each execution unit there
is an input and an output data container used to store the inputs and outputs of
the execution unit. A state is associated with each execution unit, as well as
two conditions, one to determine when the execution unit can start and another
to determine when it has been completed successfully.

Execution Unit
Start Condition
—

Input eati End Condition
Contai —

State
/T

Figure 2.2 The execution unit as the basic building block of a workflow model

Process is the equivalent of a program. It specifies the execution logic by
linking execution units via control and data connectors. To allow nesting, a
process can be represented as an execution unit, in which case it becomes one
more step within another process. The possible states of a process are shown
in Figure 2.3.

Forced Termination
INACTIVE SUSPENDED

FALSE

EXECUTED

Start Suspend Resume o
i3
[— EXECUTIN(J* d
FALSE
Forced Termination, TRUE
Restart
Restart
EVALUATION OF CONDITIONS System Events PROCESS STATES

Figure 2.3 State diagram of a process

Blocks allow the modular decomposition of a process very much like in
structured programming. A block is equivalent to a series of execution units
bracketed by a BEGIN ... END. It is essentially another process except that
it has no name and can not be reused. Contrary to sub-processes, which are
bound to the parent process at run time, blocks are instantiated at compilation
time. It is.possible.to.associate.certain.semantics with blocks to denote special-
ized types of structures such as loops, case statements, and fork or parallel-do
operations.

40 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

Activities correspond to the invocation of external applications. Processes
and blocks are structuring constructs that have no effect outside the workflow
system. Activities correspond instead to interactions with the external world.
They can be manual if they require human intervention to be started, or auto-
matic if they can be started without human intervention. In general, manual
activities correspond to activities that also require user involvement to be com-
pleted (filling a form, providing some information, making a decision). Au-
tomatic activities, on the other hand, usually do not require user participation
(transactions over a database, index calculations, statistical calculations, etc.).
Associated with each activity there is an application and a set of eligible users
indicating which application is to be invoked and the users allowed to execute
it. Figure 2.4 shows the possible states of a manual activity (automatic activities
have a similar but slightly simpler state graph).

SUSPENDED Activity

EXECUTING

Start Forced
execution Termination TRUE
- READY
TERMINATED FINISHED
Restart
Flow of control will not
reach the activity
Restart
EVALUATION OF CONDITIONS System Events ACTIVITY STATES

Figure 2.4 State diagram of an activity

Data containers provide a persistent repository for the input and output pa-
rameters of an execution unit. In the case of processes, the input data container
collects input parameters for the entire process. When the process starts to
be executed, these input parameters are distributed among the input containers
of the execution units within the process. As these execution units terminate,
their outputs are transferred from their own output data containers to the out-
put container of the process. For activities, the input data container stores the
parameters to use when invoking the application and the output data container
stores the application’s return values.

Data connectors are used to specify data flow between execution units. For
instance, the input data container of a process is mapped to the different input
data containers of the execution units within the process by indicating via data
connectors which variable in the process container corresponds to which vari-
able in an execution unit container. The same mechanism is used to pass the
results,produced by,an.activity.as,inputs to another activity. Together, data con-
tainers and data connectors eliminate the need for global variables and allow
each execution unit to define its own parameters. The use of data connectors

WFMS: THE NEXT GENERATION OF DISTRIBUTED PROCESSING TOOLS 41

forces the workflow programmer to explicitly state the data flow within the
process and helps to optimize data migration in applications distributed over a
wide geographic area.

Control connectors indicate the flow of control among execution units. In
general, control connectors can only be used between execution units at the
same level of nesting, which strengthes the modularity of the language. That is,
it is not possible to add a control connector between activities of two different
blocks, or between an activity external to a process and an activity within the
process. Each control connector has a condition attached to it, which is used to
determine when the control connector is to be followed.

Conditions are boolean expressions over data in the data containers. They
indicate when certain actions should take place. In the case of execution units,
there are two types of conditions to be considered: start and end conditions.
The former specifies when an execution unit can start to execute (the exact
meaning varies depending on whether the execution unit is a block, a process
or an activity). The latter is used to determine when an execution unit has
terminated successfully, usually by checking the return code provided in the
corresponding output data container. In the case of control connectors, condi-
tions indicate whether the connector should be followed or not. If the condition
of a connector is evaluated to true, the execution unit at its end is taken out of
the inactive state (the exact action depends on the nature of the execution unit).
If the condition associated to a connector evaluates to false, it indicates that
the connector will not be followed. Marking a control connector as false trig-
gers the procedure of dead path elimination which marks off all connectors
and execution units that will never be executed. This helps to determine when
a process has terminated its execution.

Applications represent the external programs to be invoked as part of the
execution of an activity. Applications are registered with the workflow system
very much like applications being installed in an operating system. The regis-
tration process allows the workflow system to establish in which network ad-
dresses a given application can be found, access permissions associated with it,
under which operating system it runs, associated paths, input parameters, and
any other additional information necessary to invoke the application remotely.
Once registered, applications are invoked by linking them to activities.

Staff represents users and sets of users. Similarly to applications, users must
be registered with the workflow system. Users must be registered. individually
and later on they can be grouped into more meaningful sets, usually known
as roles. Roles allow the system to refer to groups (programmers, managers,
engineers, sales representatives) when allocating work, instead of having to
deal with individual users. When an activity or a process is defined, part of the
information specified.is.the users.or.group of users that are eligible to execute
the activity or to start the process.

42 ADVANCED TRANSACTION MODELS AND ARCHITECTURES

s N (=

Runtime B [£y
Interactions g 2‘ g § g =
(Interfaces) lJ & <
DR P T

Navigation W

g B Server Buildtime Server
S S

£ & I I

é o Storage

Server Buildtime

J L
7 7 1
Persistent Storage O S

Active Audit Env.
instances data data
—

- J

-~

Figure 2.5 Functional architecture of a workflow management system

2.2.3 Architecture

Architectural details vary from product to product and are evolving very quickly
as products try to cope with more demanding environments. It is possible, how-
ever, to distinguish a set of features common to most systems by looking at the
functionality that needs to be provided.

2.2.3.1 Functional Description. The basic functionality of a workflow
system can be divided in three major areas: design and development, exe-
cution environment, and interfaces. Usually, these three areas are also re-
ferred to as Buildtime, Runtime control and Runtime interactions respectively
[Hollinsworth, 1996, WFMC, 1994].

For design and development, workflow systems provide a language along the
lines described above as well as several tools to register users and applications.
Programming, i.e., designing, a workflow process is usually done through a
graphical interface in which execution units are represented as a variety of se-
lectable icons and connectors as directed links between these icons. This ap-
proach is perhaps the most user friendly but it has several drawbacks, the main
one being that it becomes rather cumbersome to visualize and manipulate large
and complex processes. Current systems usually provide a more textual lan-
guage in which to specify processes but, in most cases, these languages are not
adequate for large scale programming. It is likely that, in the future, more so-
phisticated languages will be supported. Additional tools are also provided for
debugging and compiling the process description into object code that can be
used for execution. Current systems provide only a primitive development en-
vironment but, given the key role it plays, it is likely that the buildtime compo-
nent of future systems will be significantly enhanced [Leymann, 1995, Silver,
1995].

The execution environment can be divided in two parts: persistent storage
and process navigation. Persistent storage provides a repository where all the

WFMS: THE NEXT GENERATION OF DISTRIBUTED PROCESSING TOOLS 43

necessary information about the system can be kept and retrieved at any time.
Persistent storage is managed via a storage server. Since the information in-
volved is often complex and it is necessary to support complex queries over it,
most systems use a database management system for this purpose. The advan-
tage of relying on persistent storage is that it makes possible to recover from
failures without losing data (forward recovery) and also provides the means to
maintain a record of the execution of processes. These two features open up
many interesting possibilities when programming distributed applications. For
instance, the fact that the execution is persistent implies that failures will not
require to repeat the entire process, execution can be resumed from the point
where it was left when the failure occurred. It is possible to subdivide the per-
sistent storage in several areas according to the data stored: audit trail, active
instances , and environment information. The audit trail contains information
about already executed processes. In business environments this provides the
information necessary to evaluate the organization’s performance, system evo-
lution, potential bottlenecks as well as supporting data mining and analysis
techniques. Active instances correspond to the persistent state of processes
being executed, which can be queried through monitoring tools provided by
the user interface. The environment information corresponds to the staff and
applications. It is used to locate applications and to determine the invocation
method as well as to locate users and to determine their access rights. Process
navigation is performed by the navigation server or WFM Engine. It mainly
involves evaluating the conditions specified for activities and control connec-
tors, activating or deactivating control connectors and triggering sta<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>